Phosphoethanolamine (PEA) on Neisseria gonorrhoeae lipid A influences gonococcal inflammatory signaling and susceptibility to innate host defenses in in vitro models. Here, we evaluated the role of PEA-decorated gonococcal lipid A in competitive infections in female mice and in male volunteers. We inoculated mice and men with mixtures of wild-type N. gonorrhoeae and an isogenic mutant that lacks the PEA transferase, LptA. LptA production conferred a marked survival advantage for wild-type gonococci in the murine female genital tract and in the human male urethra. Our studies translate results from test tube to animal model and into the human host and demonstrate the utility of the mouse model for studies of virulence factors of the human-specific pathogen N. gonorrhoeae that interact with non-host-restricted elements of innate immunity. These results validate the use of gonococcal LptA as a potential target for development of novel immunoprophylactic strategies or antimicrobial treatments.IMPORTANCE Gonorrhea is one of the most common bacterial sexually transmitted infections, and increasing antibiotic resistance threatens the use of currently available antimicrobial therapies. In this work, encompassing in vitro studies and in vivo studies of animal and human models of experimental genital tract infection, we document the importance of lipid A’s structure, mediated by a single bacterial enzyme, LptA, in enhancing the fitness of Neisseria gonorrhoeae. The results of these studies suggest that novel agents targeting LptA may offer urgently needed prevention or treatment strategies for gonorrhea.
Neisseria gonorrhoeae is a strict human pathogen that causes the sexually transmitted infection termed gonorrhea. The gonococcus can survive extracellularly and intracellularly, but in both environments the bacteria must acquire iron from host proteins for survival. However, upon infection the host uses a defensive response by limiting the bioavailability of iron by a number of mechanisms including the enhanced expression of hepcidin, the master iron-regulating hormone, which reduces iron uptake from the gut and retains iron in macrophages. The host also secretes the antibacterial protein NGAL, which sequesters bacterial siderophores and therefore inhibits bacterial growth. To learn whether intracellular gonococci can subvert this defensive response, we examined expression of host genes that encode proteins involved in modulating levels of intracellular iron. We found that N. gonorrhoeae can survive in association (tightly adherent and intracellular) with monocytes and macrophages and upregulates a panel of its iron-responsive genes in this environment. We also found that gonococcal infection of human monocytes or murine macrophages resulted in the upregulation of hepcidin, NGAL, and NRAMP1 as well as downregulation of the expression of the gene encoding the short chain 3-hydroxybutyrate dehydrogenase (BDH2); BDH2 catalyzes the production of the mammalian siderophore 2,5-DHBA involved in chelating and detoxifying iron. Based on these findings, we propose that N. gonorrhoeae can subvert the iron-limiting innate immune defenses to facilitate iron acquisition and intracellular survival.
dDuring infection, the sexually transmitted pathogen Neisseria gonorrhoeae (the gonococcus) encounters numerous host-derived antimicrobials, including cationic antimicrobial peptides (CAMPs) produced by epithelial and phagocytic cells. CAMPs have both direct and indirect killing mechanisms and help link the innate and adaptive immune responses during infection. Gonococcal CAMP resistance is likely important for avoidance of host nonoxidative killing systems expressed by polymorphonuclear granulocytes (e.g., neutrophils) and intracellular survival. Previously studied gonococcal CAMP resistance mechanisms include modification of lipid A with phosphoethanolamine by LptA and export of CAMPs by the MtrCDE efflux pump. In the related pathogen Neisseria meningitidis, a two-component regulatory system (2CRS) termed MisR-MisS has been shown to contribute to the capacity of the meningococcus to resist CAMP killing. We report that the gonococcal MisR response regulator but not the MisS sensor kinase is involved in constitutive and inducible CAMP resistance and is also required for intrinsic low-level resistance to aminoglycosides. The 4-to 8-fold increased susceptibility of misR-deficient gonococci to CAMPs and aminoglycosides was independent of phosphoethanolamine decoration of lipid A and the levels of the MtrCDE efflux pump and seemed to correlate with a general increase in membrane permeability. Transcriptional profiling and biochemical studies confirmed that expression of lptA and mtrCDE was not impacted by the loss of MisR. However, several genes encoding proteins involved in membrane integrity and redox control gave evidence of being MisR regulated. We propose that MisR modulates the levels of gonococcal susceptibility to antimicrobials by influencing the expression of genes involved in determining membrane integrity. N eisseria gonorrhoeae is a Gram-negative diplococcus and the causative agent of the sexually transmitted infection termed gonorrhea, which is currently the second most reported infection in the United States (1); an estimated 78 million new cases of gonorrhea occurred worldwide in 2012 (2). In addition to the high worldwide prevalence of gonorrhea, strains with resistance to currently or formerly used antibiotics have emerged, and concern has been voiced that without new effective antimicrobials, some cases of gonorrhea may be difficult to treat in future years (3). In addition to its ability to resist classical antibiotics used in treatment, gonococci have evolved mechanisms to evade the antimicrobial action of host compounds that participate in the innate host defense during infection. For instance, the ability of gonococci to resist the antibiotic-like action of host cationic antimicrobial peptides (CAMPs), such as defensins (4) or larger antimicrobial proteins (e.g., bactericidal permeability-increasing protein [5], cathepsin G [6], and CAP37 [7]), has been implicated in its survival within human polymorphonuclear granulocytes (PMNs) (8, 9).Broadly, there are five known ways in which gonococci res...
Autophagy, an ancient homeostasis mechanism for macromolecule degradation, performs an important role in host defense by facilitating pathogen elimination. To counteract this host defense strategy, bacterial pathogens have evolved a variety of mechanisms to avoid or otherwise dysregulate autophagy by phagocytic cells so as to enhance their survival during infection. Neisseria gonorrhoeae is a strictly human pathogen that causes the sexually transmitted infection, gonorrhea. Phosphoethanolamine (PEA) addition to the 4' position of the lipid A (PEA-lipid A) moiety of the lipooligosaccharide (LOS) produced by gonococci performs a critical role in this pathogen’s ability to evade innate defenses by conferring decreased susceptibility to cationic antimicrobial (or host-defense) peptides, complement-mediated killing by human serum and intraleukocytic killing by human neutrophils compared to strains lacking this PEA decoration. Heretofore, however, it was not known if gonococci can evade autophagy and if so, whether PEA-lipid A contributes to this ability. Accordingly, by using murine macrophages and human macrophage-like phagocytic cell lines we investigated if PEA decoration of gonococcal lipid A modulates autophagy formation. We report that infection with PEA-lipid A-producing gonococci significantly reduced autophagy flux in murine and human macrophages and enhanced gonococcal survival during their association with macrophages compared to a PEA-deficient lipid A mutant. Our results provide further evidence that PEA-lipid A produced by gonococci is a critical component in the ability of this human pathogen to evade host defenses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.