Experimental investigations for anatomic variation in the magnitude and anisotropy of elastic constants in human femoral cortical bone tissue have typically focused on a limited number of convenient sites near the mid-diaphysis. However, the proximal and distal ends of the diaphysis are more clinically relevant to common orthopaedic procedures and interesting mechanobiology. Therefore, the objective of this study was to measure anatomic variation in the elastic anisotropy and inhomogeneity of human cortical bone tissue along the entire length (15-85% of the total femur length) and around the periphery (anterior, medial, posterior and lateral quadrants) of the femoral diaphysis using ultrasonic wave propagation in the three orthogonal specimen axes. The elastic symmetry of tissue in the distal and extreme proximal portions of the diaphysis (15-45% and 75-85% of the total femur length, respectively) was, at most, orthotropic. In contrast, the elastic symmetry of tissue near the mid-and proximal mid-diaphysis (50-70% of the total femur length) was reasonably approximated as transversely isotropic. The magnitudes of elastic constants generally reached maxima near the mid-and proximal mid-diaphysis in the lateral and medial quadrants, and decreased toward the epiphyses, as well as the posterior and anterior quadrants. The elastic anisotropy ratio in the longitudinal and radial anatomic axes showed the opposite trends. These variations were significantly correlated with the apparent tissue density, as expected. In summary, the human femur exhibited statistically significant anatomic variation in elastic anisotropy, which may have important implications for whole bone numerical models and mechanobiology.
The new HA-polymer calibration phantom with a less attenuating polymer and an expanded range of HA density resulted in a more accurate measurement of micro-CT equivalent BMD and TMD in human cortical bone specimens compared to a conventional phantom, as verified by ash density measurements on the same specimens.
The anisotropic elastic constants of human cortical bone were predicted using a specimen-specific micromechanical model that accounted for structural parameters across multiple length scales. At the nano-scale, the elastic constants of the mineralized collagen fibril were estimated from measured volume fractions of the constituent phases, namely apatite crystals and Type I collagen. The elastic constants of the extracellular matrix (ECM) were predicted using the measured orientation distribution function (ODF) for the apatite crystals to average the contribution of misoriented mineralized collagen fibrils. Finally, the elastic constants of cortical bone tissue were determined by accounting for the measured volume fraction of Haversian porosity within the ECM. Model predictions using the measured apatite crystal ODF were not statistically different from experimental measurements for both the magnitude and anisotropy of elastic constants. In contrast, model predictions using common idealized assumptions of perfectly aligned or randomly oriented apatite crystals were significantly different from the experimental measurements. A sensitivity analysis indicated that the apatite crystal volume fraction and ODF were the most influential structural parameters affecting model predictions of the magnitude and anisotropy, respectively, of elastic constants.
Numerical models commonly account for elastic inhomogeneity in cortical bone using power-law scaling relationships with various measures of tissue density, but limited experimental data exists for anatomic variation in elastic anisotropy. A recent study revealed anatomic variation in the magnitude and anisotropy of elastic constants along the entire femoral diaphysis of a single human femur (Espinoza Orías et al., 2009). The objective of this study was to confirm these trends across multiple donors while also considering possible confounding effects of the anatomic quadrant, apparent tissue density, donor age, and gender. Cortical bone specimens were sampled from the whole femora of nine human donors at 20, 50, and 80% of the total femur length. Elastic constants from the main diagonal of the reduced fourth-order tensor were measured on hydrated specimens using ultrasonic wave propagation. The tissue exhibited orthotropy overall and at each location along the length of the diaphysis (p<0.0001). Elastic anisotropy increased from the mid-diaphysis toward the epiphyses (p<0.05). The increased elastic anisotropy was primarily caused by a decreased radial elastic constant (C11) from the mid-diaphysis toward the epiphyses (p<0.05), since differences in the circumferential (C22) and longitudinal (C33) elastic constants were not statistically significant (p>0.29). Anatomic variation in intracortical porosity may account for these trends, but requires further investigation. The apparent tissue density was positively correlated with the magnitude of each elastic constant (p<0.0001, R2>0.46), as expected, but was only weakly correlated with C33/C11 (p<0.05, R2=0.04) and not significantly correlated with C33/C22 and C11/C22.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.