A s the primary conduit for CO 2 and heat exchange between the atmosphere and the deep ocean, the Southern Ocean is an important part of the climate system. Approximately 40% of the ocean's inventory of anthropogenic carbon entered through the air-sea interface south of 40°S (Khatiwala et al. 2009), and the region will continue to serve as an important carbon sink into the future (Ito et al. 2015). Despite its importance, the processes controlling air-sea gas exchange in the Southern Ocean are poorly represented by models. This was highlighted in a recent comparison of models from phase 5 of the Coupled Model Intercomparison Project (CMIP5), wherein the simulated seasonal cycles of air-sea CO 2 exchange with the Southern Ocean were widely divergent and in poor agreement with observational estimates (Anav et al. 2013;Jiang et al. 2014), suggesting possible model biases in the timing, spatial A recent Southern Ocean airborne campaign collected continuous, discrete, and remote sensing measurements to investigate biogeochemical and physical processes driving air-sea exchange of CO 2 , O 2 , and reactive biogenic gases.
Photonic structures in the skin of pelagic fishes and squids evolved specifically for hiding in the complex light field of the open ocean. To understand the principles under which these structures operate, a detailed characterization of their optical properties is required. An optical scatterometer has been developed to measure one important property, the bidirectional reflectance distribution function (BRDF). The instrument was used to collect reflectance functions from the squid Pterygioteuthis microlampas and fish Sternoptyx sp. Although the animals appear very different to a casual observer, the results reveal interesting similarities in their scattering patterns, suggesting a similar optical strategy for hiding in open water.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.