Analysis of the entrance and wall dynamics of a high-flux gas-solid riser was conducted using embedded solid concentration time series collected from a 76 mm internal diameter and 10 m high riser of a circulating fluidized bed (CFB) system. The riser was operated at 4.0 to 10.0 m/s air velocity and 50 to 550 kg/m 2 s solids flux of spent fluid catalytic cracking (FCC) catalyst particles with 67 μm mean diameter and density of 1500 kg/m 3. Data were analyzed using prepared FORTRAN 2008 code to get correlation integral followed by determination of correlation dimensions with respect to the hyperspherical radius and their profiles, plots of which were studied. It was found that correlation dimension profiles at the centre have single peak with higher values than the wall region profiles. Towards the wall, these profiles have double or multiple peaks showing bifractal or multifractal flow behaviors. As the velocity increases the wall region profiles become random and irregular. Further it was found that, as the height increases the correlation dimension profiles shift towards higher hyperspherical radius at the centre and towards lower hyperspherical radius in the wall region at r/R = 0.81. The established method of mapping correlation dimension profiles in this study forms a suitable tool for analysis of high-flux riser dynamics compared to other analyses approaches. However, further analysis is recommended to other gas-solid CFB riser of different dimensions operated at high-flux conditions using the established method.
Statistical analysis of the entrance and wall dynamics of a high-flux gas-solid riser was done using solid concentration time series data collected from a 76 mm internal diameter and 10 m high riser of a CFB system with a twin-riser operated at 4.0 to 10.0 m/s gas velocity and 50 to 550 kg/m 2 s solids flux. Spent fluid catalytic cracking catalyst particles with 67 µm mean diameter and density of 1500 kg/m 3 together with 70% to 80% humid air was used. Solid concentration data were analysed using code prepared using FORTRAN 2008 to get statistical parameters and plot their profiles. Results obtained show that the gas-solid suspension flow in the riser is dominated by low solid concentration in the centre region and high solid concentration in the wall region which forms a core-annulus flow structure. The mean solid concentration in the wall region decreases with riser height from the dense bottom section to less dense in the fully developed flow section at the top of the riser. The gas-solid suspension flow in the centre region is dominated with uniform flow structure while the wall region is dominated with high fluctuations in solid concentration. Further, it was found that the entrance and developing flow sections of the riser exhibit high flow non-uniformities than the fully developed flow section of the riser. The flow non-uniformities in the entrance and developing flow section increase with increase in superficial gas velocity at constant solid flux. The wall region, from the entrance to the top sections of the riser along the axial direction exhibits both dilute and dense suspension flow.
The study of the entrance and wall dynamics of a high-flux gas-solid riser was conducted using trajectory distances of the reconstructed attractors from solid concentration signals collected from a 76 mm internal diameters and 10 m high riser of a circulating fluidized bed (CFB) system. The riser was operated at 4.0 to 10.0 m/s gas velocity and 50 to 550 kg/m 2 s solids flux. Spent fluid catalytic cracking (FCC) catalyst particles with 67 μm mean diameter and density of 1500 kg/m 3 together with 70% to 80% humid air was used. Solid concentration data were analyzed using codes prepared in FORTRAN 2008 to get trajectories of the reconstructed attractors and their distances apart. Trajectory distances were found to increase from the centre towards the wall indicating the expansion of the attractor. The probability density function (PDF) of the trajectory distances changes from single peak at the centre to multiple peaked profiles in the wall region. Multiple peaked profiles indicate multifractal flow behaviours.
An experimental study of the gas-solid flow dynamics in the high-flux CFB riser was accomplished by analysing the scaling regions from solid concentration signals collected from a 76 mm internal diameters and 10 m high riser of a circulating fluidized bed (CFB) system. The riser was operated at 4.0 to 10.0 m/s gas velocity and 50 to 550 kg/m 2 s solids flux. Spent fluid catalytic cracking (FCC) catalyst particles of 67 µm mean diameter and 1500 kg/m 3 density together with 70% to 80% humid air was used. Solid concentration data were analysed using codes prepared in FORTRAN 2008 to get correlation integrals at different embedding dimensions and operating conditions and plot their profiles. Scaling regions were identified by visual inspection method and their location on planes determined. Scaling regions were analysed based on operating conditions and riser spatial locations. It was found that scaling regions occupy different locations on the plane depending on the number of embedding dimensions and operating conditions. As the number of embedding dimensions increases the spacing between scaling regions decreases until it saturates towards higher embedding dimensions. Slopes of scaling regions increases with embedding dimensions until saturation where they become constant. Slopes of scaling regions towards the wall decrease while the number of scaling regions for a particular profile increases. The span of the scaling region is wider at the initial values of hyperspherical radius than its final values. The scaling regions in some flow development sections show multifractal behaviour for each embedding dimension which manifests into visible basin which is defined in this study as multifractal basin. Further, the end points of the scaling region for each correlation integral profile differ from each other as the embedding dimension changes. This study suggests that identification of scaling region by visual inspection How to cite this paper:
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.