The amide I vibrational mode, primarily associated with peptide-bond carbonyl stretches, has long been used to probe the structures and dynamics of peptides and proteins by infrared (IR) spectroscopy. A number of ab initio-based amide I vibrational frequency maps have been developed for calculating IR line shapes. In this paper a new empirical amide I vibrational frequency map is developed. To evaluate its performance, we applied this map to a system of isotope-edited CD3-ζ membrane peptide bundles in aqueous solution. The calculated 2D-IR diagonal linewidths vary from residue to residue and show an asymmetric pattern as a function of position in the membrane. The theoretical results are in fair agreement with experiments on the same system. Through analysis of the computed frequency time-correlation functions, it is found that the 2D-IR diagonal widths are dominated by contributions from the inhomogeneous frequency distributions, from which it follows that these widths are a good probe of the extent of local structural fluctuations. Thus the asymmetric pattern of linewidths follows from the asymmetric structure of the bundle in the membrane.
Molecular dynamics simulations were used to examine the structural dynamics of two fluorescent probes attached to a typical protein, hen egg-white lysozyme (HEWL). The donor probe (D) was attached via a succinimide group, consistent with the commonly-used maleimide conjugation chemistry, and the acceptor probe (A) was bound into the protein as occurs naturally for HEWL and the dye Eosin Y. The is found to deviate significantly from the theoretical value and high correlation between the orientation factor kappa and the distance R is observed. The correlation is quantified using several possible fixed A orientations and correlation as high as 0.80 is found between kappa and R and as high as 0.68 between kappa(2) and R. The presence of this correlation highlights the fact that essentially all fluorescence-detected resonance energy transfer studies have assumed that kappa and R are independent--an assumption that is clearly not justified in the system studied here. The correlation results in the quantities and < R(-)(6)> differing by a factor of 1.6. The observed correlation between kappa and R is caused by the succinimide linkage between the D and HEWL, which is found to be relatively inflexible.
We have explored the impact of a number of basic simulation parameters on the results of a recently developed hybrid molecular dynamics-quantum mechanics (MD-QM) method (Mercer et al., J Phys Chem B 1999, 103, 7720). The method utilizes MD simulations to explore the ground-state configuration space of the system and QM evaluation of those structures to yield the time-dependent electronic transition energy, which is transformed into the optical line-broadening function using the second-order cumulant expansion. Both linear and nonlinear optical spectra can then be generated for comparison to experiment. The dependence of the resulting spectra on the length of the MD trajectory, the QM sampling rate, and the QM model chemistry have all been examined. In particular, for the system of oxazine-4 in methanol studied here, at least 20 ps of MD trajectory are needed for qualitative convergence of linear spectral properties, and >100 ps is needed for quantitative convergence. Surprisingly, little difference is found between the 3-21G and 6-31G(d) basis sets, and the CIS and TD-B3LYP methods yield remarkably similar spectra. The semiempirical INDO/s method yields the most accurate results, reproducing the experimental Stokes shift to within 5% and the FWHM to within 20%. Nonlinear 3-pulse photon echo peak shift (3PEPS) decays have also been simulated. Decays are generally poorly reproduced, though the initial peak shift which depends on the overall coupling of motions to the solute transition energy is within 15% of experiment for all model chemistries other than those using the STO-3G basis.
When used effectively, laboratory courses can be very important for enriching teaching and learning. However, a review of many colleges and universities across the nation reveals that around 50% of the current Bachelor of Nursing programs have opted to remove (or possibly never included) the chemistry laboratory component. Authenticity is particularly important for prehealth professions students who are required to take general, organic, and biochemistry (GOB) chemistry courses; unfortunately, these students often do not feel the courses are relevant to their future careers. Using three of Herrington and Oliver's nine situated learning design elements, a GOB chemistry laboratory course has been redesigned to implement more authentic activities in the curriculum, largely through the use of an electronic laboratory notebook. The authenticity of the improvements was reviewed by a panel of practicing nurses and nursing faculty, and we report their feedback and evaluation. The general consensus of the panel is that the changes in the curriculum toward more authenticity are a great improvement for prehealthcare professionals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.