5 g tumor mass). In contrast, unconjugated CalichDMH, unconjugated G5/44, and an isotype-matched control conjugate, CMA-676, were ineffective against these BCL xenografts. Thus, CD22-targeted delivery of CalichDMH is a potent and effective preclinical therapeutic strategy for BCLs. The strong antitumor profile of CMC-544 supports its clinical evaluation as a treatment option for B-lymphoid malignan-
Purpose: CMC-544 is a CD22-targeted cytotoxic immunoconjugate, currently being evaluated in B-cell non-Hodgkin's lymphoma (B-NHL) patients. Rituximab is a CD20-targeted antibody commonly used in B-NHL therapy. Here, we describe antitumor efficacy of a combination of CMC-544 and rituximab against B-cell lymphoma (BCL) in preclinical models. Experimental Design: BCLs were cultured in vitro with CMC-544, rituximab, or their combination. BCLs were injected either s.c. or i.v. to establish localized s.c. BCL in nude mice or disseminated BCL in severe combined immunodeficient mice, respectively. I.p. treatment with CMC-544 or rituximab was initiated at various times either alone or in combination and its effect on s.c. BCL growth or survival of mice with disseminated BCL was monitored. Results: In vitro growth-inhibitory activity of CMC-544 combined with rituximab was additive. Rituximab but not CMC-544 exhibited effector functions, such as antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity. Rituximab was less effective in inhibiting growth of established BCL xenografts than developing xenografts. In contrast, CMC-544 was equally effective against both developing and established BCL xenografts. Although CMC-544 and rituximab individually caused partial inhibition of the growth of BCL xenografts at suboptimal doses examined, their combination suppressed xenograft growth by >90%. In a disseminated BCL model, 60% of CMC-544-treated mice and 20% of rituximab-treated mice survived for 125 days. In contrast, 90% of mice treated with the combination of CMC-544 and rituximab survived for longer than 125 days. Conclusion:The demonstration of superior antitumor activity of a combination of CMC-544 and rituximab described here provides the preclinical basis for its clinical evaluation as a treatment option for B-NHL.
Convenient methodology for preparation and conjugation of the protein-cutting iron chelate iron (S)-1-(p-bromoacetamidobenzyl) ethylenediaminetetraacetate (Fe-BABE) is given. This formulation of the reagent can be handled in a manner analogous to many other protein-labeling reagents, such as fluorescent probes or cross-linkers. By taking advantage of the recently discovered peptide hydrolysis reaction, the chelate may be tethered to a single site (e.g., a cysteine side chain) and used to map its proximity to individual peptide bonds by automated Edman sequencing of the protein fragments produced. The method is illustrated by conjugation of Fe-BABE to the carboxy terminal domain (amino acid residues 234-329) of the Escherichia coli RNA polymerase alpha subunit. The molecular mass of the protein conjugate was confirmed by electrospray ionization mass spectrometry.
Using small blood samples from a mouse, the sandwich plasmon resonance method provided PK-values of CM-conjugates and information about the stability of the linkage in vivo. Comparison between the PK-values of CM-conjugates in tumour-bearing and tumour-free mice suggested that retention of the conjugate in tumour tissue due to antigen targeting could be deduced from the plasma levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.