We have developed a stable, high-power, single-frequency optically pumped external-cavity semiconductor laser system and generate up to 125 mW of power at 253.7 nm using successive frequency doubling stages. We demonstrate precision scanning and control of the laser frequency in the UV to be used for cooling and trapping of mercury atoms. With active frequency stabilization, a linewidth of <60 kHz is measured in the IR. Doppler-free spectroscopy and stabilization to the 6(1)S(0)-6(3)P(1) mercury transition at 253.7 nm is demonstrated. To our knowledge, this is the first demonstration of Doppler-free spectroscopy in the deep UV based on a frequency-quadrupled, high-power (>1 W) optically pumped semiconductor laser system. The results demonstrate the utility of these devices for precision spectroscopy at deep-UV wavelengths.
We demonstrate a continuous wave, single-frequency terahertz (THz) source emitting 1.9 THz. The linewidth is less than 100 kHz and the generated THz output power exceeds 100 μW. The THz source is based on parametric difference frequency generation within a nonlinear crystal located in an optical enhancement cavity. Two single-frequency vertical-external-cavity source-emitting lasers with emission wavelengths spaced by 6.8 nm are phase locked to the external cavity and provide pump photons for the nonlinear downconversion. It is demonstrated that the THz source can be used as a local oscillator to drive a receiver used in astronomy applications.
We demonstrate a scalable approach for the generation of high average power femtosecond (fs) pulse trains from Ti:sapphire by optically injection locking a resonant amplification cavity. We generate up to 7 W average power with over 30% optical extraction efficiency in a 68 fs pulse train operating at 95 MHz. This master oscillator power amplifier approach allows independent optimization of the fs laser while enabling efficient amplification to high average powers. The technique also enables coherent synchronization among multiple fs laser sources.
We demonstrate a continuous wave, single frequency terahertz (THz) source based on parametric difference frequency generation within a nonlinear crystal located in an optical enhancement cavity. Two single-frequency VECSELs with emission wavelengths spaced by 6.8 nm are phase locked to the external cavity and are used as pump sources for the nonlinear down conversion. The emitting THz radiation is centered at 1.9 THz and has a linewidth of less than 100 kHz. The output power of the source exceeds 100 µW. We show that the THz source can be used as local oscillator to drive a receiver used in astronomy applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.