Summary The RV144 HIV-1 trial of the canary pox vector (ALVAC-HIV) plus the gp120 AIDSVAX B/E vaccine demonstrated an estimated efficacy of 31%, that correlated directly with antibodies to HIV-1 envelope variable regions 1 and 2 (V1–V2). Genetic analysis of trial viruses revealed increased vaccine efficacy against viruses matching the vaccine strain at V2 residue 169. Here, we isolated four V2 monoclonal antibodies from RV144 vaccinees that recognize residue 169, neutralize laboratory-adapted HIV-1, and mediate killing of field isolate HIV-1-infected CD4+ T cells. Crystal structures of two of the V2 antibodies demonstrated residue 169 can exist within divergent helical and loop conformations, which contrasted dramatically with the beta strand conformation previously observed with a broadly neutralizing antibody PG9. Thus, RV144 vaccine-induced immune pressure appears to target a region that may be both sequence variable and structurally polymorphic. Variation may signal sites of HIV-1 envelope vulnerability, providing vaccine designers with new options.
iThe ALVAC-HIV/AIDSVAX-B/E RV144 vaccine trial showed an estimated efficacy of 31%. RV144 secondary immune correlate analysis demonstrated that the combination of low plasma anti-HIV-1 Env IgA antibodies and high levels of antibody-dependent cellular cytotoxicity (ADCC) inversely correlate with infection risk. One hypothesis is that the observed protection in RV144 is partially due to ADCC-mediating antibodies. We found that the majority (73 to 90%) of a representative group of vaccinees displayed plasma ADCC activity, usually (96.2%) blocked by competition with the C1 region-specific A32 Fab fragment. Using memory B-cell cultures and antigen-specific B-cell sorting, we isolated 23 ADCC-mediating nonclonally related antibodies from 6 vaccine recipients. These antibodies targeted A32-blockable conformational epitopes (n ؍ 19), a non-A32-blockable conformational epitope (n ؍ 1), and the gp120 Env variable loops (n ؍ 3). Fourteen antibodies mediated cross-clade target cell killing. ADCC-mediating antibodies displayed modest levels of V-heavy (VH) chain somatic mutation (0.5 to 1.5%) and also displayed a disproportionate usage of VH1 family genes (74%), a phenomenon recently described for CD4-binding site broadly neutralizing antibodies (bNAbs). Maximal ADCC activity of VH1 antibodies correlated with mutation frequency. The polyclonality and low mutation frequency of these VH1 antibodies reveal fundamental differences in the regulation and maturation of these ADCC-mediating responses compared to VH1 bNAbs.
Analysis of correlates of risk of infection in the RV144 HIV-1 vaccine efficacy trial demonstrated that plasma IgG against the HIV-1 envelope (Env) variable region 1 and 2 inversely correlated with risk, whereas HIV-1 Env-specific plasma IgA responses directly correlated with risk. In the secondary analysis, antibody-dependent cellular cytotoxicity (ADCC) was another inverse correlate of risk, but only in the presence of low plasma IgA Env-specific antibodies. Thus, we investigated the hypothesis that IgA could attenuate the protective effect of IgG responses through competition for the same Env binding sites. We report that Env-specific plasma IgA/IgG ratios are higher in infected than in uninfected vaccine recipients in RV144. Moreover, Env-specific IgA antibodies from RV144 vaccinees blocked the binding of ADCC-mediating mAb to HIV-1 Env glycoprotein 120 (gp120). An Env-specific monomeric IgA mAb isolated from an RV144 vaccinee also inhibited the ability of natural killer cells to kill HIV-1-infected CD4 + T cells coated with RV144-induced IgG antibodies. We show that monomeric Env-specific IgA, as part of postvaccination polyclonal antibody response, may modulate vaccine-induced immunity by diminishing ADCC effector function.T he phase III RV144 ALVAC/AIDSVAX B/E HIV-1 vaccine efficacy trial in Thailand demonstrated 31.2% estimated vaccine efficacy through 42 mo of follow-up (1). Analysis of correlates of risk of infection indicated that envelope (Env)-specific plasma antibody responses were associated with a lower infection risk in vaccinees (2). Though plasma Env variable region 1 and 2 (V1/V2) IgG correlated with decreased infection risk, high levels of anti-HIV-1 Env plasma IgA correlated with increased infection risk (2). Interaction analyses demonstrated that, in the presence of low IgA Env antibodies, antibody-dependent cellular cytotoxicity (ADCC) responses inversely correlated with risk of infection, whereas in the presence of high IgA Env plasma antibodies, there was no correlation with risk of infection (2). Because there was no overall enhancement of infection risk in the trial (1), we hypothesized that Env IgA might block potentially protective effector functions of Env IgG antibodies.Antibody function depends, in part, on ability to bind to Fc receptors (FcR) on effector cells. The antibody isotype and subclass influences its affinity for different cellular FcRs (3, 4). IgG antibodies that mediate ADCC through natural killer (NK) cells bind to FcγRIIIa (CD16). In contrast, IgA antibodies do not bind to FcγRIIIa, but, rather, have high affinity for FcαRI (CD89) expressed by monocytes/macrophages and polymorphonuclear cells (PMN). This differential profile of FcR binding by IgG and IgA antibodies impacts the effector function capabilities of these antibody isotypes.Here, we examined plasma IgA and monomeric IgA monoclonal antibodies from RV144 vaccine recipients to test the hypothesis that some fraction of the vaccine-elicited IgA response could block IgG-mediated ADCC function. We found that a f...
؉ T cells earlier than the CD4-inducible (CD4i) epitope bound by MAb 17b and the gp120 carbohydrate epitope bound by MAb 2G12. Importantly, MAb A32 was a potent mediator of ADCC activity. Finally, an A32 Fab fragment blocked the majority of ADCC-mediating Ab activity in plasma of subjects chronically infected with HIV-1. These data demonstrate that the epitope defined by MAb A32 is a major target on gp120 for plasma ADCC activity.
Human cytomegalovirus (HCMV) is the most common congenital infection worldwide, frequently causing hearing loss and brain damage in afflicted infants. A vaccine to prevent maternal acquisition of HCMV during pregnancy is necessary to reduce the incidence of infant disease. The glycoprotein B (gB) + MF59 adjuvant subunit vaccine platform is the most successful HCMV vaccine tested to date, demonstrating ∼50% efficacy in preventing HCMV acquisition in multiple phase 2 trials. However, the mechanism of vaccine protection remains unknown. Plasma from 33 postpartum women gB/MF59 vaccinees at peak immunogenicity was tested for gB epitope specificity as well as neutralizing and nonneutralizing anti-HCMV effector functions and compared with an HCMV-seropositive cohort. gB/MF59 vaccination elicited IgG responses with gB-binding magnitude and avidity comparable to natural infection. Additionally, IgG subclass distribution was similar with predominant IgG1 and IgG3 responses induced by gB vaccination and HCMV infection. However, vaccine-elicited antibodies exhibited limited neutralization of the autologous virus, negligible neutralization of multiple heterologous strains, and limited binding responses against gB structural motifs targeted by neutralizing antibodies including AD-1, AD-2, and domain I. Vaccinees had high-magnitude IgG responses against AD-3 linear epitopes, demonstrating immunodominance against this nonneutralizing, cytosolic region. Finally, vaccine-elicited IgG robustly bound membrane-associated gB on the surface of transfected or HCMV-infected cells and mediated virion phagocytosis, although were poor mediators of NK cell activation. Altogether, these data suggest that nonneutralizing antibody functions, including virion phagocytosis, likely played a role in the observed 50% vaccine-mediated protection against HCMV acquisition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.