There is strong evidence that climate change will increase drought risk and severity, but these conclusions depend on the regions, seasons, and drought metrics being considered. We analyze changes in drought across the hydrologic cycle (precipitation, soil moisture, and runoff) in projections from Phase Six of the Coupled Model Intercomparison Project (CMIP6). The multimodel ensemble shows robust drying in the mean state across many regions and metrics by the end of the 21st century, even following the more aggressive mitigation pathways (SSP1-2.6 and SSP2-4.5). Regional hotspots with strong drying include western North America, Central America, Europe and the Mediterranean, the Amazon, southern Africa, China, Southeast Asia, and Australia. Compared to SSP3-7.0 and SSP5-8.5, however, the severity of drying in the lower warming scenarios is substantially reduced and further precipitation declines in many regions are avoided. Along with drying in the mean state, the risk of the historically most extreme drought events also increases with warming, by 200-300% in some regions. Soil moisture and runoff drying in CMIP6 is more robust, spatially extensive, and severe than precipitation, indicating an important role for other temperature-sensitive drought processes, including evapotranspiration and snow. Given the similarity in drought responses between CMIP5 and CMIP6, we speculate that both generations of models are subject to similar uncertainties, including vegetation processes, model representations of precipitation, and the degree to which model responses to warming are consistent with observations. These topics should be further explored to evaluate whether CMIP6 models offer reasons to have increased confidence in drought projections. Plain Language SummaryDrought is an important natural hazard in many regions around the world, and there are significant concerns that climate change will increase the frequency or severity of drought events in the future. Compared to a world before anthropogenic climate change, the latest state-of-the-art climate model projections from CMIP6 show robust drying and increases in extreme drought occurrence across many regions by the end of the 21st century, including western North America, Central America, Europe and the Mediterranean, the Amazon, southern Africa, China, Southeast Asia, and Australia. While these changes occur even under the most aggressive climate mitigation pathways, the models show substantial increases in the extent and severity of this drying under higher warming levels, highlighting the value of mitigation for reducing drought-based climate change impacts. Given the significant response to even modest warming, however, and evidence that climate change has already increased drought risk and severity in some regions, adaptation to a new, drier baseline will likely be required even under the most optimistic scenarios.
Efforts to understand the influence of historical global warming on individual extreme climate events have increased over the past decade. However, despite substantial progress, events that are unprecedented in the local observational record remain a persistent challenge. Leveraging observations and a large climate model ensemble, we quantify uncertainty in the influence of global warming on the severity and probability of the historically hottest month, hottest day, driest year, and wettest 5-d period for different areas of the globe. We find that historical warming has increased the severity and probability of the hottest month and hottest day of the year at >80% of the available observational area. Our framework also suggests that the historical climate forcing has increased the probability of the driest year and wettest 5-d period at 57% and 41% of the observed area, respectively, although we note important caveats. For the most protracted hot and dry events, the strongest and most widespread contributions of anthropogenic climate forcing occur in the tropics, including increases in probability of at least a factor of 4 for the hottest month and at least a factor of 2 for the driest year. We also demonstrate the ability of our framework to systematically evaluate the role of dynamic and thermodynamic factors such as atmospheric circulation patterns and atmospheric water vapor, and find extremely high statistical confidence that anthropogenic forcing increased the probability of record-low Arctic sea ice extent. event attribution | climate extremes | climate change | global warming T he last decade has witnessed increasing interest in possible connections between historical global warming and individual extreme climate events (1-9). This interest is grounded in both scientific and practical motivations. First, extremes underlie many of the most acute stresses on natural and human systems (10, 11). Understanding the influence of historical warming on extremes is therefore critical for detecting climate change impacts (12, 13). Second, trends in the frequency and/or intensity of extremes have already been detected (10, 11), implying increasing probability of events that are unprecedented in the observed record. Third, continued global warming is likely to cause widespread emergence of unprecedented events in the future (e.g., refs. 10 and 14).Effective management of climate-related risks therefore requires robust quantification of the probability of extremes in the current and future climate (10). For example, quantification of risk and liability (8,15), and design of resilient infrastructure and resource management systems (16), must account for both historical nonstationarity and the likelihood of future changes. Similarly, the United Nations mechanisms for climate change compensation, adaptation, and preparation create a practical need to quantify the contribution of historical emissions to individual extreme events (e.g., ref. 17). Finally, connections between historical warming and individual events have b...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.