The major current conventional types of metastatic breast cancer (MBC) treatments include surgery, radiation, hormonal therapy, chemotherapy, or immunotherapy. Introducing biological drugs, targeted treatment and gene therapy can potentially reduce the mortality and improve the quality of life in patients with MBC. However, combination of several types of treatment is usually recommended. Triple negative breast cancer (TNBC) accounts for 10–20% of all cases of breast carcinoma and is characterized by the low expression of progesterone receptor (PR), estrogen receptor (ER), and human epidermal growth factor receptor 2 (HER2). Consequently, convenient treatments used for MBC that target these receptors are not effective for TNBC which therefore requires special treatment approaches. This review discusses the occurrence of MBC, the prognosis and predictive biomarkers of MBC, and focuses on the novel advanced tactics for treatment of MBC and TNBC. Nanotechnology-based combinatorial approach for the suppression of EGFR by siRNA and gifitinib is described.
The review is aimed at describing modern approaches to detection as well as precision and personalized treatment of ovarian cancer. Modern methods and future directions of nanotechnology-based targeted and personalized therapy are discussed.
Directing anticancer agents specifically to tumors and/or cancer cells by targeting specific extracellular receptors fulfills the following three most important tasks: (1) preventing or at least substantially limiting adverse side effects on healthy tissues, (2) enhancing drug internalization by cancer cells, and (3) overcoming (at least in part) resistance mechanisms that are based on the active efflux of exogenous drugs from cancer cells. We developed several tumor-targeted nanoscale-based formulations: various nanocarriers (liposomes, lipid nanoparticles, dendrimers, polymers, quantum dots, mesoporous silica and supermagnetic iron oxide nanoparticles); different anticancer drugs (doxorubicin, paclitaxel, camptothecin, and cisplatin); suppressors of cellular drug resistance and tumor grows (antisense oligonucleotides or siRNA targeted to BCL2, MDR1, MRP1, HIF1A, CD44 mRNA); and tumor-targeting agent - luteinizing hormone-releasing hormone (LHRH). The proposed nanotherapeutics were tested in vitro and in vivo using established lung and ovarian cancer cell lines and highly metastatic cancer cells isolated from malignant intraperitoneal ascites from patients with advanced ovarian carcinoma. These cells were used to initiate orthotopic models of lung and ovarian cancers in nude mice that were often accompanied by the development of metastases. Tumor-targeted nanoscale-based drug formulations were delivered intravenously and intraperitoneally (for ovarian cancer) or intravenously and by inhalation (for lung cancer). Treatment with the developed therapeutics led to the suppression of targeted proteins, efficient induction of cell death, effective tumor shrinkage, prevention the development of metastases and limitation of adverse side effects. Acknowledgements: The work was supported by R01CA100098, R01CA111766, and R01CA138533 grants from NIH. Note: This abstract was not presented at the meeting. Citation Format: Olga B. Garbuzenko, Andriy Kuzmov, Justin E. Sapiezynski, Oleh Taratula, Vatsal Shah, Min Zhang, Ronak Savla, Shali John, Lorna Rodriguez-Rodriguez, Tamara Minko. Tumor-targeted nanotherapeutics. [abstract]. In: Proceedings of the 106th Annual Meeting of the American Association for Cancer Research; 2015 Apr 18-22; Philadelphia, PA. Philadelphia (PA): AACR; Cancer Res 2015;75(15 Suppl):Abstract nr 4405. doi:10.1158/1538-7445.AM2015-4405
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.