As interest in lignocellulosic biomass feedstocks for conversion into transportation fuels grows, the summative compositional analysis of biomass, or plant-derived material, becomes ever more important. The sulfuric acid hydrolysis of biomass has been used to measure lignin and structural carbohydrate content for more than 100 years. Researchers have applied these methods to measure the lignin and structural carbohydrate contents of woody materials, estimate the nutritional value of animal feed, analyze the dietary fiber content of human food, compare potential biofuels feedstocks, and measure the efficiency of biomass-to-biofuels processes. The purpose of this paper is to review the history and lineage of biomass compositional analysis methods based on a sulfuric acid hydrolysis. These methods have become the de facto procedure for biomass compositional analysis. The paper traces changes to the biomass compositional analysis methods through time to the biomass methods currently used at the National Renewable Energy Laboratory (NREL). The current suite of laboratory analytical procedures (LAPs) offered by NREL is described, including an overview of the procedures and methodologies and some common pitfalls. Suggestions are made for continuing improvement to the suite of analyses.
The most common procedures for characterizing the chemical components
of lignocellulosic feedstocks use a two-stage sulfuric acid hydrolysis
to fractionate biomass for gravimetric and instrumental analyses.
The uncertainty (i.e., dispersion of values from repeated measurement)
in the primary data is of general interest to those with technical
or financial interests in biomass conversion technology. The composition
of a homogenized corn stover feedstock (154 replicate samples in 13
batches, by 7 analysts in 2 laboratories) was measured along with
a National Institute of Standards and Technology (NIST) reference
sugar cane bagasse, as a control, using this laboratory's suite of
laboratory analytical procedures (LAPs). The uncertainty was evaluated
by the statistical analysis of these data and is reported as the standard
deviation of each component measurement. Censored and uncensored versions
of these data sets are reported, as evidence was found for intermittent
instrumental and equipment problems. The censored data are believed
to represent the “best case” results of these analyses,
whereas the uncensored data show how small method changes can strongly
affect the uncertainties of these empirical methods. Relative standard
deviations (RSD) of 1−3% are reported for glucan, xylan, lignin,
extractives, and total component closure with the other minor components
showing 4−10% RSD. The standard deviations seen with the corn
stover and NIST bagasse materials were similar, which suggests that
the uncertainties reported here are due more to the analytical method
used than to the specific feedstock type being analyzed.
This paper describes a study of the variability of measured composition for a single bulk sugarcane bagasse conducted across eight laboratories using similar analytical methods, with the purpose of determining the expected variation for compositional analysis performed by different laboratories. The results show good agreement of measured composition within a single laboratory, but greater variability when results are compared among laboratories. These interlaboratory variabilities do not seem to be associated with a specific method or technique or any single piece of instrumentation. The summary censored statistics provide mean values and pooled standard deviations as follows: total extractives 6.7% (0.6%), whole ash 1.5% (0.2%), glucan 42.3% (1.2%), xylan 22.3% (0.5%), total lignin 21.3% (0.4%), and total mass closure 99.4% (2.9%).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.