Background: The rapid development and complexity of new x-ray computed tomography (CT) technologies and the need for evidence-based optimization of image quality with respect to radiation and contrast media dose call for an updated approach towards CT performance evaluation. Aims: This report offers updated testing guidelines for testing CT systems with an enhanced focus on the operational performance including iterative reconstructions and automatic exposure control (AEC) techniques. Materials and Methods: The report was developed based on a comprehensive review of best methods and practices in the scientific literature. The detailed methods include the assessment of 1) CT noise (magnitude, texture, nonuniformity, inhomogeneity), 2) resolution (task transfer function under varying conditions and its scalar reflections), 3) task-based performance (detectability, estimability), and 4) AEC performance (spatial, noise, and mA concordance of attenuation and exposure modulation). The methods include varying reconstruction and tube current modulation conditions, standardized testing protocols, and standardized quantities and metrology to facilitate tracking, benchmarking, and quantitative comparisons. Results: The methods, implemented in cited publications, are robust to provide a representative reflection of CT system performance as used operationally in a clinical facility. The methods include recommendations for phantoms and phantom image analysis. Discussion: In line with the current professional trajectory of the field toward quantitation and operational engagement, the stated methods offer quantitation that is more predictive of clinical performance than specification-based approaches. They can pave the way to approach performance testing of new CT systems not only in terms of acceptance testing (i.e., verifying a device meets predefined specifications), but also system commissioning (i.e., determining how the system can be used most effectively in clinical practice). Conclusion: We offer a set of common testing procedures that can be utilized towards the optimal clinical utilization of CT imaging devices, benchmarking across varying systems and times, and a basis to develop future performance-based criteria for CT imaging.
Quantum noise properties observed in uniform phantoms may not be representative of those in actual patients for nonlinear reconstruction algorithms. Anatomical texture should be considered when evaluating the performance of CT systems that use such nonlinear algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.