International audienceA set S of vertices in a graph G is an independent dominating set of G if S is an independent set and every vertex not in S is adjacent to a vertex in S. The independent domination number of G, denoted by inline image, is the minimum cardinality of an independent dominating set. In this article, we show that if inline image is a connected cubic graph of order n that does not have a subgraph isomorphic to K2, 3, then inline image. As a consequence of our main result, we deduce Reed's important result [Combin Probab Comput 5 (1996), 277–295] that if G is a cubic graph of order n, then inline image, where inline image denotes the domination number of G
A set S of vertices in a graph G is an independent dominating set of G if S is an independent set and every vertex not in S is adjacent to a vertex in S. In this paper, we consider questions about independent domination in regular graphs.
a b s t r a c tIt has been shown [M.A. Henning, J. Southey, A note on graphs with disjoint dominating and total dominating sets, Ars Combin. 89 (2008) 159-162] that every connected graph with minimum degree at least two that is not a cycle on five vertices has a dominating set D and a total dominating set T which are disjoint. We characterize such graphs for which D ∪ T necessarily contains all vertices of the graph and that have no induced cycle on five vertices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.