Members of the neurotrophin gene family and their high-affinity Trk receptors control innervation of the cochlea during embryonic development. Lack of neurotrophin signalling in the cochlea has been well documented for early postnatal animals, resulting in a loss of cochlear sensory neurones and a region-specific reduction of target innervation along the tonotopic axis. However, how reduced neurotrophin signalling affects the innervation of the mature cochlea is currently unknown. Here, we have analysed the consequences of a lack of the TrkB receptor and its ligand, the neurotrophin brain-derived neurotrophic factor (Bdnf), in the late postnatal or adult cochlea using mouse mutants. During early postnatal development, mutant animals show a lack of afferent innervation of outer hair cells in the apical part of the cochlea,whereas nerve fibres in the basal part are maintained. Strikingly, this phenotype is reversed during subsequent maturation of the cochlea, which results in a normal pattern of outer hair cell innervation in the apex and loss of nerve fibres at the base in adult mutants. Measurements of auditory brain stem responses of these mice revealed a significant hearing loss. The observed innervation patterns correlate with opposing gradients of Bdnf and Nt3 expression in cochlear neurones along the tonotopic axis. Thus, the reshaping of innervation may be controlled by autocrine signalling between neurotrophins and their receptors in cochlear neurones. Our results indicate a substantial potential for re-innervation processes in the mature cochlea,which may also be of relevance for treatment of hearing loss in humans.
Mesoporous silica supraparticles (MS-SPs) are prepared via self-assembly of mesoporous silica nanoparticles under capillary force action in confined droplets. The MS-SPs are effective carriers for sustained drug delivery. Animal studies show that these particles are suitable for chronic intracochlear implantation, and neurotrophins released from the MS-SPs can efficiently rescue primary auditory neurons in an in vivo sensorineural hearing loss model.
Neurotrophin-BDNF can be effectively encapsulated in nanoporous poly(L-glutamic acid) particles prepared via mesoporous silica templating. The loaded BDNF can be released in a sustained manner with maintained biological activity. Animal experiments demonstrate the released BDNF can efficiently rescue the auditory neurons (as indicated by the arrows) in the cochlea of guinea pigs with sensorineural hearing loss.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.