Abstract-This paper describes a real-time motion planning algorithm, based on the Rapidly-exploring Random Tree (RRT) approach, applicable to autonomous vehicles operating in an urban environment. Extensions to the standard RRT are predominantly motivated by: (i) the need to generate dynamically feasible plans in real-time, (ii) safety requirements, (iii) the constraints dictated by the uncertain operating (urban) environment. The primary novelty is in the use of closed-loop prediction in the framework of RRT. The proposed algorithm was at the core of the planning and control software for Team MIT's entry for the 2007 DARPA Urban Challenge, where the vehicle demonstrated the ability to complete a 60 mile simulated military supply mission, while safely interacting with other autonomous and human driven vehicles.
This paper describes the architecture and implementation of an autonomous passenger vehicle designed to navigate using locally perceived information in preference to potentially inaccurate or incomplete map data. The vehicle architecture was designed to handle the original DARPA Urban Challenge requirements of perceiving and navigating a road network with segments defined by sparse waypoints. The vehicle implementation includes many heterogeneous sensors with significant communications and computation bandwidth to capture and process high-resolution, high-rate sensor data. The output of the comprehensive environmental sensing subsystem is fed into a kinodynamic motion planning algorithm to generate all vehicle motion. The requirements of driving in lanes, three-point turns, parking, and maneuvering through obstacle fields are all generated with a unified planner. A key aspect of the planner is its use of closed-loop simulation in a rapidly exploring randomized trees algorithm, which can randomly explore the space while efficiently generating smooth trajectories in a dynamic and uncertain environment. The overall system was realized through the creation of a powerful new suite of software tools for message passing, logging, and visualization. These innovations provide a strong platform for future research in autonomous driving in global positioning system-denied and highly dynamic environments with poor a priori information. C 2008 Wiley Periodicals, Inc.
This paper describes the architecture and implementation of an autonomous passenger vehicle designed to navigate using locally perceived information in preference to potentially inaccurate or incomplete map data. The vehicle architecture was designed to handle the original DARPA Urban Challenge requirements of perceiving and navigating a road network with segments defined by sparse waypoints. The vehicle implementation includes many heterogeneous sensors with significant communications and computation bandwidth to capture and process high-resolution, high-rate sensor data. The output of the comprehensive environmental sensing subsystem is fed into a kino-dynamic motion planning algorithm to generate all vehicle motion. The requirements of driving in lanes, three-point turns, parking, and maneuvering through obstacle fields are all generated with a unified planner. A key aspect of the planner is its use of closed-loop simulation in a Rapidly-exploring Randomized Trees (RRT) algorithm, which can randomly explore the space while efficiently generating smooth trajectories in a dynamic and uncertain environment. The overall system was realized through the creation of a powerful new suite of software tools for message-passing, logging, and visualization. These innovations provide a strong platform for future research in autonomous driving in GPS-denied and highly dynamic environments with poor a priori information.
Abstract-This paper provides a detailed analysis of the motion planning subsystem for the MIT DARPA Urban Challenge vehicle. The approach is based on the Rapidly-exploring Random Trees (RRT) algorithm. The purpose of this paper is to present the numerous extensions made to the standard RRT algorithm that enable the on-line use of RRT on robotic vehicles with complex, unstable dynamics and significant drift, while preserving safety in the face of uncertainty and limited sensing. The paper includes numerous simulation and race results that clearly demonstrate the effectiveness of the planning system.
This paper describes the motion planning and control subsystems of Team MIT's entry in the 2007 DARPA Grand Challenge. The novelty is in the use of closed-loop prediction in the framework of Rapidly-exploring Random Tree (RRT). Unlike the standard RRT, an input to the controller is sampled, followed by the forward simulation using the vehicle model and the controller to compute the predicted trajectory. This enables the planner to generate smooth trajectories much more efficiently, while the randomization allows the planner to explore cluttered environment. The controller consists of a Proportional-Integral speed controller and a nonlinear pure-pursuit steering controller, which are used both in execution and in the simulation-based prediction. The main advantages of the forward simulation are that it can easily incorporate any nonlinear control law and nonlinear vehicle dynamics, and the resulting trajectory is dynamically feasible. By using a stabilizing controller, it can handle vehicles with unstable dynamics. Several results obtained using MIT's race vehicle demonstrate these features of the approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.