The Neoproterozoic was an era of great environmental and biological change, but a paucity of direct and precise age constraints on strata from this time has prevented the complete integration of these records. We present four high-precision U-Pb ages for Neoproterozoic rocks in northwestern Canada that constrain large perturbations in the carbon cycle, a major diversification and depletion in the microfossil record, and the onset of the Sturtian glaciation. A volcanic tuff interbedded with Sturtian glacial deposits, dated at 716.5 million years ago, is synchronous with the age of the Franklin large igneous province and paleomagnetic poles that pin Laurentia to an equatorial position. Ice was therefore grounded below sea level at very low paleolatitudes, which implies that the Sturtian glaciation was global in extent.
The snowball Earth hypothesis predicts globally synchronous glaciations that persisted on a multimillion year time scale. Geochronological tests of this hypothesis have been limited by a dearth of reliable age constraints bracketing these events on multiple cratons. Here we present four new Re-Os geochronology age constraints on Sturtian (717-660 Ma) and Marinoan (635 Ma termination) glacial deposits from three different paleocontinents. A 752.7 ± 5.5 Ma age from the base of the Callison Lake Formation in Yukon, Canada, confi rms nonglacial sedimentation on the western margin of Laurentia between ca. 753 and 717 Ma. Coupled with a new 727.3 ± 4.9 Ma age directly below the glacigenic deposits of the Grand Conglomerate on the Congo craton (Africa), these data refute the notion of a global ca. 740 Ma Kaigas glaciation. A 659.0 ± 4.5 Ma age directly above the Maikhan-Uul diamictite in Mongolia confi rms previous constraints on a long duration for the 717-660 Ma Sturtian glacial epoch and a relatively short nonglacial interlude. In addition, we provide the fi rst direct radiometric age constraint for the termination of the Marinoan glaciation in Laurentia with an age of 632.3 ± 5.9 Ma from the basal Sheepbed Formation of northwest Canada, which is identical, within uncertainty, to U-Pb zircon ages from China, Australia, and Namibia. Together, these data unite Re-Os and U-Pb geochronological constraints and provide a refi ned temporal framework for Cryogenian Earth history.
After nearly a billion years with no evidence for glaciation, ice advanced to equatorial latitudes at least twice between 717 and 635 Mya. Although the initiation mechanism of these Neoproterozoic Snowball Earth events has remained a mystery, the broad synchronicity of rifting of the supercontinent Rodinia, the emplacement of large igneous provinces at low latitude, and the onset of the Sturtian glaciation has suggested a tectonic forcing. We present unique Re-Os geochronology and high-resolution Os and Sr isotope profiles bracketing Sturtian-age glacial deposits of the Rapitan Group in northwest Canada. Coupled with existing U-Pb dates, the postglacial Re-Os date of 662.4 ± 3.9 Mya represents direct geochronological constraints for both the onset and demise of a Cryogenian glaciation from the same continental margin and suggests a 55-My duration of the Sturtian glacial epoch. The Os and Sr isotope data allow us to assess the relative weathering input of old radiogenic crust and more juvenile, mantle-derived substrate. The preglacial isotopic signals are consistent with an enhanced contribution of juvenile material to the oceans and glacial initiation through enhanced global weatherability. In contrast, postglacial strata feature radiogenic Os and Sr isotope compositions indicative of extensive glacial scouring of the continents and intense silicate weathering in a post-Snowball Earth hothouse.rhenium-osmium geochronology | strontium isotopes | osmium isotopes | Windermere Supergroup | Neoproterozoic glaciation T he Snowball Earth hypothesis predicts that Neoproterozoic glaciations were global and synchronous at low latitudes and that deglaciation occurred as a result of the buildup of pCO 2 to extreme levels resulting in a "greenhouse" aftermath (1, 2). The temporal framework of Cryogenian glaciations is built on chemostratigraphy and correlation of lithologically distinct units, such as glaciogenic deposits, iron formation, and cap carbonates (3), tied to the few successions that contain volcanic rocks dated using U-Pb zircon geochronology (4). In strata lacking horizons suitable for U-Pb geochronology, Re-Os geochronology can provide depositional ages on organic-rich sedimentary rocks bracketing glaciogenic strata (5, 6). Moreover, Os isotope stratigraphy can be used as a proxy to test for supergreenhouse weathering during deglaciation (7). In a Snowball Earth scenario, we can make specific predictions for Cryogenian weathering: CO 2 consumption via silicate weathering should increase before glaciation, stagnate during the glaciation, and increase again during deglaciation. However, the use of a single weathering proxy to provide evidence for such a scenario, such as Sr isotopes from marine carbonates, is limited both by lithological constraints and an inability to distinguish between the amount of weathering and the composition of what is being weathered (8). The short residence time of Os in the present-day oceans (<10 ky) (9) provides a complementary higher resolution archive to Sr isotopes, and thus, insi...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.