Protein phosphatase 2A (PP2A) is a family of multifunctional serine/threonine phosphatases all composed of a catalytic C, a structural A, and a regulatory B subunit. Assembly of the complex with the appropriate B subunit forms the key to the functional specificity and regulation of PP2A. Emerging evidence suggests a crucial role for methylation and phosphorylation of the PP2A C subunit in this process. In this study, we show that PP2A C subunit methylation was not absolutely required for binding the PR61/B and PR72/B؆ subunit families, whereas binding of the PR55/B subunit family was determined by methylation and the nature of the C-terminal amino acid side chain. Moreover mutation of the phosphorylatable Tyr 307 or Thr 304 residues differentially affected binding of distinct B subunit family members. Down-regulation of the PP2A methyltransferase LCMT1 by RNA interference gradually reduced the cellular amount of methylated C subunit and induced a dynamic redistribution of the remaining methylated PP2A C between different PP2A trimers consistent with their methylation requirements. Persistent knockdown of LCMT1 eventually resulted in specific degradation of the PR55/B subunit and apoptotic cell death. Together these results establish a crucial foundation for understanding PP2A regulatory subunit selection.Protein phosphatase 2A (PP2A) 2 represents a family of heterotrimeric serine/threonine phosphatases implicated in the regulation of a plethora of cellular processes such as apoptosis, transcription, translation, DNA replication, signal transduction, protection against tumorigenesis, and cell division (for reviews, see Refs. 1 and 2). It is estimated that, depending on the cell type, PP2A holoenzymes are responsible for 30 -50% of the total cellular serine/threonine dephosphorylating activity, demonstrating the importance of this enzyme system for almost any aspect of life.The basis of this broad functional importance is formed by the diversity of specific PP2A subunit compositions. Typically the PP2A core enzyme exists as a dimer (PP2A D ) consisting of a catalytic subunit (C subunit/PP2A C ) and a scaffolding A subunit (PR65/A subunit). Proper functioning and regulation of PP2A is achieved by the association of regulatory B subunits 3 with the PP2A core enzyme, resulting in the formation of heterotrimeric PP2A holoenzymes with specific catalytic properties, subcellular locations, and substrate specificities. At present, three multigene families of B-type subunits have been described, PR55/B, PR61/BЈ, and PR72/BЉ, all with specific cellular functions. Therefore, the assembly of the complex with the appropriate B-type subunit is the key to specificity and regulation of PP2A (2). In this process, the highly conserved C-terminal PP2A C tail seems to play a crucial role (3, 4). Recently a major breakthrough has been achieved by elucidating the crystal structure of a heterotrimeric PP2A T61␥ holoenzyme (5, 6). It was shown that the C-terminal PP2A C tail recognizes a surface groove at the interface between the PR65 a...
To identify novel targets for neuropathic pain, 3097 mouse knockout lines were tested in acute and persistent pain behavior assays. One of the lines from this screen, which contained a null allele of the adapter protein-2 associated kinase 1 (AAK1) gene, had a normal response in acute pain assays (hot plate, phase I formalin), but a markedly reduced response to persistent pain in phase II formalin. AAK1 knockout mice also failed to develop tactile allodynia following the Chung procedure of spinal nerve ligation (SNL). Based on these findings, potent, small-molecule inhibitors of AAK1 were identified. Studies in mice showed that one such inhibitor, LP-935509, caused a reduced pain response in phase II formalin and reversed fully established pain behavior following the SNL procedure. Further studies showed that the inhibitor also reduced evoked pain responses in the rat chronic constriction injury (CCI) model and the rat streptozotocin model of diabetic peripheral neuropathy. Using a nonbrain-penetrant AAK1 inhibitor and local administration of an AAK1 inhibitor, the relevant pool of AAK1 for antineuropathic action was found to be in the spinal cord. Consistent with these results, AAK1 inhibitors dose-dependently reduced the increased spontaneous neural activity in the spinal cord caused by CCI and blocked the development of windup induced by repeated electrical stimulation of the paw. The mechanism of AAK1 antinociception was further investigated with inhibitors of α2 adrenergic and opioid receptors. These studies showed that α2 adrenergic receptor inhibitors, but not opioid receptor inhibitors, not only prevented AAK1 inhibitor antineuropathic action in behavioral assays, but also blocked the AAK1 inhibitor–induced reduction in spinal neural activity in the rat CCI model. Hence, AAK1 inhibitors are a novel therapeutic approach to neuropathic pain with activity in animal models that is mechanistically linked (behaviorally and electrophysiologically) to α2 adrenergic signaling, a pathway known to be antinociceptive in humans.
The physiological functions and pathological roles of the Glycogen synthase kinase-type 3 (GSK3) kinases in peripheral and central systems are diverse and complex, and therefore hard to unravel in molecular detail in vivo. Our assignment to review and discuss available data to clarify the actual position of these kinases in the pathology of Alzheimer’s dementia (AD) was both ambitious and easy. On the one hand, numerous studies are available in isolated, recombinant, or cell-based systems, which have resulted in very diverse data-sets that are hardly informative for the brain in vivo. At the other extreme, reliable, and relevant models for the role of GSK3 in CNS are rare, if not lacking. Moreover, (too) many in vivo studies used Li+ as “specific” inhibitor of GSK3, which is factually not valid because lithium ions are neither specific nor potent inhibitors of GSK3 in vivo. More specific pharmacological inhibitors of GSK3 have met with considerable problems, and are reviewed by others in this issue or elsewhere. We concentrate here on AD-related aspects of GSK3 in brain in vivo, mainly studied in transgenic mice and highlight some of the more important issues, among many remaining: activation of GSK3 by amyloid, phosphorylation of protein tau, effects on or interference with synaptic activity, differentiation between both GSK3 isoforms. These relate directly to brain function, and brain dysfunction in AD, and are to be resolved if we want to understand the molecular pathology of this dreadful disease.
Functional diversity of protein phosphatase 2A (PP2A) enzymes mainly results from their association with distinct regulatory subunits. To analyze the functions of one such holoenzyme in vivo, we generated mice lacking PR61/B'δ (B56δ), a subunit highly expressed in neural tissues. In PR61/B'δ-null mice the microtubule-associated protein tau becomes progressively phosphorylated at pathological epitopes in restricted brain areas, with marked immunoreactivity for the misfolded MC1-conformation but without neurofibrillary tangle formation. Behavioral tests indicated impaired sensorimotor but normal cognitive functions. These phenotypical characteristics were further underscored in PR61/B'δ-null mice mildly overexpressing human tau. PR61/B'δ-containing PP2A (PP2A T61δ ) poorly dephosphorylates tau in vitro, arguing against a direct dephosphorylation defect. Rather, the activity of glycogen synthase kinase-3β, a major tau kinase, was found increased, with decreased phosphorylation of Ser-9, a putative cyclin-dependent kinase 5 (CDK5) target. Accordingly, CDK5 activity is decreased, and its cellular activator p35, strikingly absent in the affected brain areas. As opposed to tau, p35 is an excellent PP2A T61δ substrate. Our data imply a nonredundant function for PR61/B'δ in phospho-tau homeostasis via an unexpected spatially restricted mechanism preventing p35 hyperphosphorylation and its subsequent degradation.brain stem | knockout mouse | AT8 | AT180 | transgenic
The microtubule associated protein tau causes primary and secondary tauopathies by unknown molecular mechanisms. Post-translational O-GlcNAc-ylation of brain proteins was demonstrated here to be beneficial for Tau.P301L mice by pharmacological inhibition of O-GlcNAc-ase. Chronic treatment of ageing Tau.P301L mice mitigated their loss in body-weight and improved their motor deficits, while the survival was 3-fold higher at the pre-fixed study endpoint at age 9.5 months. Moreover, O-GlcNAc-ase inhibition significantly improved the breathing parameters of Tau.P301L mice, which underpinned pharmacologically the close correlation of mortality and upper-airway defects. O-GlcNAc-ylation of brain proteins increased rapidly and stably by systemic inhibition of O-GlcNAc-ase. Conversely, biochemical evidence for protein Tau.P301L to become O-GlcNAc-ylated was not obtained, nor was its phosphorylation consistently or markedly affected. We conclude that increasing O-GlcNAc-ylation of brain proteins improved the clinical condition and prolonged the survival of ageing Tau.P301L mice, but not by direct biochemical action on protein tau. The pharmacological effect is proposed to be located downstream in the pathological cascade initiated by protein Tau.P301L, opening novel venues for our understanding, and eventually treating the neurodegeneration mediated by protein tau.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.