Krabbe's disease is an infantile neurodegenerative disease, which is affected by mutations in the lysosomal enzyme galactocerebrosidase, leading to the accumulation of its metabolite psychosine. We have shown previously that the S1P receptor agonist fingolimod (FTY720) attenuates psychosine-induced glial cell death and demyelination both in vitro and ex vivo models. These data, together with a lack of therapies for Krabbe's disease, prompted the current preclinical study examining the effects of fingolimod in twitcher mice, a murine model of Krabbe's disease. Twitcher mice, both male and female, carrying a natural mutation in the galc gene were given fingolimod via drinking water (1 mg/kg/d). The direct impact of fingolimod administration was assessed via histochemical and biochemical analysis using markers of myelin, astrocytes, microglia, neurons, globoid cells, and immune cells. The effects of fingolimod on twitching behavior and life span were also demonstrated. Our results show that treatment of twitcher mice with fingolimod significantly rescued myelin levels compared with vehicle-treated animals and also regulated astrocyte and microglial reactivity. Furthermore, nonphosphorylated neurofilament levels were decreased, indicating neuroprotective and neurorestorative processes. These protective effects of fingolimod on twitcher mice brain pathology was reflected by an increased life span of fingolimod-treated twitcher mice. These in vivo findings corroborate initial in vitro studies and highlight the potential use of S1P receptors as drug targets for treatment of Krabbe's disease.
Background Fine scale geospatial analysis of HIV infection patterns can be used to facilitate geographically targeted interventions. Our objective was to use the geospatial technology to map age and time standardized HIV incidence rates over a period of 10 years to identify communities at high risk of HIV in the greater Durban area. Methods HIV incidence rates from 7557 South African women enrolled in five community-based HIV prevention trials (2002–2012) were mapped using participant household global positioning system (GPS) coordinates. Age and period standardized HIV incidence rates were calculated for 43 recruitment clusters across greater Durban. Bayesian conditional autoregressive areal spatial regression (CAR) was used to identify significant patterns and clustering of new HIV infections in recruitment communities. Results The total person-time in the cohort was 9093.93 years and 613 seroconversions were observed. The overall crude HIV incidence rate across all communities was 6·74 per 100PY (95% CI: 6·22–7·30). 95% of the clusters had HIV incidence rates greater than 3 per 100PY. The CAR analysis identified six communities with significantly high HIV incidence. Estimated relative risks for these clusters ranged from 1.34 to 1.70. Consistent with these results, age standardized HIV incidence rates were also highest in these clusters and estimated to be 10 or more per 100 PY. Compared to women 35+ years old younger women were more likely to reside in the highest incidence areas (aOR: 1·51, 95% CI: 1·06–2·15; aOR: 1.59, 95% CI: 1·19–2·14 and aOR: 1·62, 95% CI: 1·2–2·18 for < 20, 20–24, 25–29 years old respectively). Partnership factors (2+ sex partners and being unmarried/not cohabiting) were also more common in the highest incidence clusters (aOR 1.48, 95% CI: 1.25–1.75 and aOR 1.54, 95% CI: 1.28–1.84 respectively). Conclusion Fine geospatial analysis showed a continuous, unrelenting, hyper HIV epidemic in most of the greater Durban region with six communities characterised by particularly high levels of HIV incidence. The results motivate for comprehensive community-based HIV prevention approaches including expanded access to PrEP. In addition, a higher concentration of HIV related services is required in the highest risk communities to effectively reach the most vulnerable populations. Electronic supplementary material The online version of this article (10.1186/s12879-019-4080-6) contains supplementary material, which is available to authorized users.
Background and Purpose: Chronic inflammation may play a role in the pathogenesis of Parkinson's disease (PD). Noradrenaline is an endogenous neurotransmitter with anti-inflammatory properties. In the present investigation, we assessed the immunomodulatory and neuroprotective efficacy of pharmacologically targeting the CNS noradrenergic system in a rat model of PD.Experimental Approach: The impact of treatment with the β 2 -adrenoceptor agonists clenbuterol and formoterol was assessed in the intranigral LPS rat model of PD. The immunomodulatory potential of formoterol to influence the CNS response to systemic inflammation was also assessed.Key Results: LPS-induced deficits in motor function (akinesia and forelimb-use asymmetry) and nigrostriatal dopamine loss were rescued by both agents. Treatment with the noradrenaline reuptake inhibitor atomoxetine reduced striatal dopamine loss and motor deficits following intranigral LPS injection. Co-treatment with the β 2adrenoceptor antagonist ICI 118,551 attenuated the protective effects of atomoxetine. Systemic LPS challenge exacerbated reactive microgliosis, IL-1β production, dopamine cell loss in the substantia nigra, nerve terminal degeneration in the striatum, and associated motor impairments in animals that previously received intranigral LPS. This exacerbation was attenuated by formoterol treatment. Conclusion and Implications:The results indicate that pharmacologically targeting β 2 -adrenoceptors has the propensity to regulate the neuroinflammatory phenotype in vivo and may be a potential neuroprotective strategy where inflammation contributes to the progression of dopaminergic neurodegeneration. In accordance with this, clinical agents such as β 2 -adrenoceptor agonists may prove useful as immunomodulatory agents in the treatment of neurodegenerative conditions associated with brain inflammation.
In this study we examined the impact of systemic treatment with the long-acting brain penetrant β2-adrenoceptor agonist clenbuterol on NFκB activity and IκB expression in rat brain. Clenbuterol decreased NFκB activity (p65 DNA binding) in nuclear extracts prepared from rat cortex and hippocampus for up to 8h following a single treatment. This was accompanied by increased expression of IκBα mRNA and protein. The temporal increase in IκB protein expression paralleled the suppression of NFκB activity, suggesting that IκBα mediates the suppression NFκB activity observed. These actions of clenbuterol were prevented by pre-treatment with the non-selective β-adrenoceptor antagonist propranolol, the β2-adrenoceptor antagonist ICI-118,551, but not the β1-adrenoceptor antagonist metoprolol, suggesting that the effects of clenbuterol on IκBα expression and NFκB activity are mediated specifically by the β2-adrenoceptor. In addition, the actions of clenbuterol were mimicked by systemic administration of another highly selective long-acting β2-adrenoceptor agonist formoterol. As neurodegenerative diseases are associated with inflammation we determined if clenbuterol could suppress NFκB activation that occurs in response to an inflammatory stimulus. In this regard we demonstrate that clenbuterol inhibited IκB phosphorylation and IκB degradation and inhibited NFκB activity in hippocampus and cortex of rats following a central injection of the inflammagen bacterial lipopolysaccharide (LPS). In tandem, clenbuterol blocked expression of the NFκB-inducible genes TNF-α and ICAM-1 following LPS administration. Our finding that clenbuterol and formoterol inhibit NFκB activity in the CNS further supports the idea that β2-adrenoceptors may be an attractive target for treating neuroinflammation and combating inflammation-related neurodegeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.