Highly active, durable, and cost-effective electrocatalysts for water oxidation to evolve oxygen gas hold a key to a range of renewable energy solutions, including water-splitting and rechargeable metal-air batteries. Here, we report the synthesis of ultrathin nickel-iron layered double hydroxide (NiFe-LDH) nanoplates on mildly oxidized multiwalled carbon nanotubes (CNTs). Incorporation of Fe into the nickel hydroxide induced the formation of NiFe-LDH. The crystalline NiFe-LDH phase in nanoplate form is found to be highly active for oxygen evolution reaction in alkaline solutions. For NiFe-LDH grown on a network of CNTs, the resulting NiFe-LDH/CNT complex exhibits higher electrocatalytic activity and stability for oxygen evolution than commercial precious metal Ir catalysts.
Silicon's sensitivity to corrosion has hindered its use in photoanode applications. We found that deposition of a ~2-nanometer nickel film on n-type silicon (n-Si) with its native oxide affords a high-performance metal-insulator-semiconductor photoanode for photoelectrochemical (PEC) water oxidation in both aqueous potassium hydroxide (KOH, pH = 14) and aqueous borate buffer (pH = 9.5) solutions. The Ni film acted as a surface protection layer against corrosion and as a nonprecious metal electrocatalyst for oxygen evolution. In 1 M aqueous KOH, the Ni/n-Si photoanodes exhibited high PEC activity with a low onset potential (~1.07 volts versus reversible hydrogen electrode), high photocurrent density, and durability. The electrode showed no sign of decay after ~80 hours of continuous PEC water oxidation in a mixed lithium borate-potassium borate electrolyte. The high photovoltage was attributed to a high built-in potential in a metal-insulator-semiconductor-like device with an ultrathin, incomplete screening Ni/NiO(x) layer from the electrolyte.
In vivo fluorescence imaging in the second near-infrared window (1.0-1.7 mm) can afford deep tissue penetration and high spatial resolution, owing to the reduced scattering of long-wavelength photons. Here we synthesize a series of low-bandgap donor/acceptor copolymers with tunable emission wavelengths of 1,050-1,350 nm in this window. Noncovalent functionalization with phospholipid-polyethylene glycol results in water-soluble and biocompatible polymeric nanoparticles, allowing for live cell molecular imaging at 41,000 nm with polymer fluorophores for the first time. Importantly, the high quantum yield of the polymer allows for in vivo, deep-tissue and ultrafast imaging of mouse arterial blood flow with an unprecedented frame rate of 425 frames per second. The high time-resolution results in spatially and time resolved imaging of the blood flow pattern in cardiogram waveform over a single cardiac cycle (B200 ms) of a mouse, which has not been observed with fluorescence imaging in this window before.
Compared to imaging in the visible and near-infrared regions below 900 nm, imaging in the second near-infrared window (NIR-II, 1000-1700 nm) is a promising method for deep-tissue high-resolution optical imaging in vivo mainly owing to the reduced scattering of photons traversing through biological tissues. Herein, semiconducting single-walled carbon nanotubes with large diameters were used for in vivo fluorescence imaging in the long-wavelength NIR region (1500-1700 nm, NIR-IIb). With this imaging agent, 3-4 μm wide capillary blood vessels at a depth of about 3 mm could be resolved. Meanwhile, the blood-flow speeds in multiple individual vessels could be mapped simultaneously. Furthermore, NIR-IIb tumor imaging of a live mouse was explored. NIR-IIb imaging can be generalized to a wide range of fluorophores emitting at up to 1700 nm for high-performance in vivo optical imaging.
We investigate high-field transport in graphene nanoribbons (GNRs) on SiO(2), up to breakdown. The maximum current density is limited by self-heating, but can reach >3 mA/μm for GNRs ~15 nm wide. Comparison with larger, micron-sized graphene devices reveals that narrow GNRs benefit from 3D heat spreading into the SiO(2), which enables their higher current density. GNRs also benefit from lateral heat flow to the contacts in short devices (<~0.3 μm), which allows extraction of a median GNR thermal conductivity (TC), ~80 W m(-1)K(-1) at 20 °C across our samples, dominated by phonons. The TC of GNRs is an order of magnitude lower than that of micron-sized graphene on SiO(2), suggesting strong roles of edge and defect scattering, and the importance of thermal dissipation in small GNR devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.