SUMMARYRetinoblastoma is an aggressive childhood cancer of the developing retina that is initiated by the biallelic loss of the RB1 gene. To identify the mutations that cooperate with RB1 loss, we performed whole-genome sequencing of retinoblastomas. The overall mutational rate was very low; RB1 was the only known cancer gene mutated. We then evaluated RB1’s role in genome stability and considered nongenetic mechanisms of cancer pathway deregulation. Here we show that the retinoblastoma genome is stable, but multiple cancer pathways can be epigenetically deregulated. For example, the proto-oncogene SYK is upregulated in retinoblastoma and is required for tumor cell survival. Targeting SYK with a small-molecule inhibitor induced retinoblastoma tumor cell death in vitro and in vivo. Thus, RB1 inactivation may allow preneoplastic cells to acquire multiple hallmarks of cancer through epigenetic mechanisms, resulting directly or indirectly from RB1 loss. These data provide novel targets for chemotherapeutic interventions of retinoblastoma.
SUMMARY Rhabdomyosarcoma is a soft-tissue sarcoma with molecular and cellular features of developing skeletal muscle. Rhabdomyosarcoma has two major histological subtypes, embryonal and alveolar, each with distinct clinical, molecular, and genetic features. Genomic analysis show that embryonal tumors have more structural and copy number variations than alveolar tumors. Mutations in the RAS/NF1 pathway are significantly associated with intermediate- and high-risk embryonal rhabdomyosarcomas (ERMS). In contrast, alveolar rhabdomyosarcoma (ARMS) have fewer genetic lesions overall and no known recurrently mutated cancer consensus genes. To identify therapeutics for ERMS, we developed and characterized orthotopic xenografts of tumors that were sequenced in our study. High throughput screening of primary cultures derived from those xenografts identified oxidative stress as a pathway of therapeutic relevance for ERMS.
Cancer is a form of non-resolving, persistent inflammation where varying numbers of tumor-associated macrophages (TAMs) infiltrate and adopt different activation states between anti-tumor M1 and pro-tumor M2 phenotypes. Here we resolve a cascade causing differential macrophage phenotypes in the tumor microenvironment. Reduction in TNF mRNA production or loss of Type I TNF receptor signaling resulted in a striking pattern of enhanced M2 mRNA expression. M2 gene expression was driven in part by IL-13 from eosinophils co-recruited with inflammatory monocytes, a pathway that was suppressed by TNF. Our data define regulatory nodes within the tumor microenvironment that balance M1 and M2 populations. Our results show macrophage polarization in cancer is dynamic and dependent on the balance between TNF and IL-13, thus providing a strategy for manipulating TAMs.
SUMMARY It is widely believed that the molecular and cellular features of a tumor reflect its cell of origin and can thus provide clues about treatment targets. The retinoblastoma cell of origin has been debated for over a century. Here, we report that human and mouse retinoblastomas have molecular, cellular, and neurochemical features of multiple cell classes, principally amacrine/horizontal interneurons, retinal progenitor cells, and photoreceptors. Importantly, single-cell gene expression array analysis showed that these multiple cell type-specific developmental programs are coexpressed in individual retinoblastoma cells, which creates a progenitor/neuronal hybrid cell. Furthermore, neurotransmitter receptors, transporters, and biosynthetic enzymes are expressed in human retinoblastoma, and targeted disruption of these pathways reduces retinoblastoma growth in vivo and in vitro.
Personalized cancer therapy targeting somatic mutations in patient tumors is increasingly being incorporated into practice. Other therapeutic vulnerabilities resulting from changes in gene expression due to tumor specific epigenetic perturbations are progressively being recognized. These genomic and epigenomic changes are ultimately manifest in the tumor proteome and phosphoproteome. We integrated transcriptomic, epigenomic, and proteomic/phosphoproteomic data to elucidate the cellular origins and therapeutic vulnerabilities of rhabdomyosarcoma (RMS). We discovered that alveolar RMS occurs further along the developmental program than embryonal RMS. We also identified deregulation of the RAS/MEK/ERK/CDK4/6, G/M, and unfolded protein response pathways through our integrated analysis. Comprehensive preclinical testing revealed that targeting the WEE1 kinase in the G/M pathway is the most effective approach in vivo for high-risk RMS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.