Which scientist has never heard of glutathione (GSH)? This well-known low-molecular-weight tripeptide is perhaps the most famous natural antioxidant. However, the interest in GSH should not be restricted to its redox properties. This multidisciplinary review aims to bring out some lesser-known aspects of GSH, for example, as an emerging tool in nanotechnologies to achieve targeted drug delivery. After recalling the biochemistry of GSH, including its metabolism pathways and redox properties, its involvement in cellular redox homeostasis and signaling is described. Analytical methods for the dosage and localization of GSH or glutathiolated proteins are also covered. Finally, the various therapeutic strategies to replenish GSH stocks are discussed, in parallel with its use as an addressing molecule in drug delivery.
Monocytes/macrophages and vascular smooth muscle cells (vSMCs) are the main cell types implicated in atherosclerosis development, and unlike other mature cell types, both retain a remarkable plasticity. In mature vessels, differentiated vSMCs control the vascular tone and the blood pressure. In response to vascular injury and modifications of the local environment (inflammation, oxidative stress), vSMCs switch from a contractile to a secretory phenotype and also display macrophagic markers expression and a macrophagic behaviour. Endothelial dysfunction promotes adhesion to the endothelium of monocytes, which infiltrate the sub-endothelium and differentiate into macrophages. The latter become polarised into M1 (pro-inflammatory), M2 (anti-inflammatory) or Mox macrophages (oxidative stress phenotype). Both monocyte-derived macrophages and macrophage-like vSMCs are able to internalise and accumulate oxLDL, leading to formation of “foam cells” within atherosclerotic plaques. Variations in the levels of nitric oxide (NO) can affect several of the molecular pathways implicated in the described phenomena. Elucidation of the underlying mechanisms could help to identify novel specific therapeutic targets, but to date much remains to be explored. The present article is an overview of the different factors and signalling pathways implicated in plaque formation and of the effects of NO on the molecular steps of the phenotypic switch of macrophages and vSMCs.
S-Nitrosothiols, a class of NO donors, demonstrate potential benefits for cardiovascular diseases. Drugs for such chronic diseases require long term administration preferentially through the oral route. However, the absorption of S-nitrosothiols by the intestine, which is the first limiting barrier for their vascular bioavailability, is rarely evaluated. Using an in vitro model of intestinal barrier, based on human cells, the present work aimed at elucidating the mechanisms of intestinal transport (passive or active, paracellular or transcellular pathway) and at predicting the absorption site of three S-nitrosothiols: S-nitrosoglutathione (GSNO), S-nitroso-N-acetyl-l-cysteine (NACNO) and S-nitroso-N-acetyl-d-penicillamine (SNAP). These S-nitrosothiols include different skeletons carrying the nitroso group, which confer different physico-chemical characteristics and biological activities (antioxidant and anti-inflammatory). According to the values of apparent permeability coefficient, the three S-nitrosothiols belong to the medium class of permeability. The evaluation of the bidirectional apparent permeability demonstrated a passive diffusion of the three S-nitrosothiols. GSNO and NACNO preferentially cross the intestinal barrier though the transcellular pathway, while SNAP followed both the trans- and paracellular pathways. Finally, the permeability of NACNO was favoured at pH 6.4, which is close to the pH of the jejunal part of the intestine. Through this study, we determined the absorption mechanisms of S-nitrosothiols and postulated that they can be administrated through the oral route.
Asbestos is the main causative agent of malignant pleural mesothelioma. The variety known as crocidolite (blue asbestos) owns the highest pathogenic potential, due to the dimensions of its fibers as well as to its content of iron. The latter can in fact react with macrophage-derived hydrogen peroxide in the so called Fenton reaction, giving rise to highly reactive and mutagenic hydroxyl radical. On the other hand, hydroxyl radical can as well originate after thiol-dependent reduction of iron, a process capable of starting its redox cycling. Previous studies showed that glutathione (GSH) is one such thiol, and that cellular gamma-glutamyltransferase (GGT) can efficiently potentiate GSH-dependent iron redox cycling and consequent oxidative stress. As GGT is expressed in macrophages and is released upon their activation, the present study was aimed at verifying the hypothesis that GSH/GGT-dependent redox reactions may participate in the oxidative stress following the activation of macrophages induced by crocidolite asbestos. Experiments in acellular systems confirmed that GGT-mediated metabolism of GSH can potentiate crocidolite-dependent production of superoxide anion, through the production of highly reactive dipeptide thiol cysteinyl-glycine. Cultured THP-1 macrophagic cells, as well as isolated monocytes obtained from healthy donors and differentiated to macrophages in vitro, were investigated as to their expression of GGT and the effects of exposure to crocidolite. The results show that crocidolite asbestos at subtoxic concentrations (50–250 ng/1000 cells) can upregulate GGT expression, which raises the possibility that macrophage-initiated, GSH/GGT-dependent pro-oxidant reactions may participate in the pathogenesis of tissue damage and inflammation consequent to crocidolite intoxication.
Rationale:The potency of S-nitrosoglutathione (GSNO) as a nitric oxide (NO) donor to treat cardiovascular diseases (CVDs) has been highlighted in numerous studies. In order to study its bioavailability after oral administration, which represents the most convenient route for the chronic treatment of CVDs, it is essential to develop an analytical method permitting (i) the simultaneous measurement of GSNO metabolites, i.e. nitrite, S-nitrosothiols (RSNOs) and nitrate and (ii) to distinguish them from other sources (endogenous synthesis and diet). Methods:Exogenous GSNO was labeled with 15 N, and the GS 15 NO metabolites after conversion into the nitrite ion were derivatized with 2,3-diaminonaphthalene.The resulting 2,3-naphthotriazole was quantified by liquid chromatography/tandem ion trap mass spectrometry (LC/ITMS/MS) in multiple reaction monitoring mode after Higher-energy Collision-induced Dissociation (HCD). Finally, the validated method was applied to an in vitro model of the intestinal barrier (monolayer of Caco-2 cells) to study GS 15 NO intestinal permeability. Results: A LC/ITMS/MS method based on an original transition (m/z 171 to 156)for sodium 15 N-nitrite, GS 15 NO and sodium 15 N-nitrate measurements was validated, with recoveries of 100.8 ± 3.8, 98.0 ± 2.7 and 104.1 ± 3.3%, respectively. Intra-and inter-day variabilities were below 13.4 and 12.6%, and the limit of quantification reached 5 nM (signal over blank = 4). The permeability of labeled GS 15 NO (10-100 μM) was evaluated by calculating its apparent permeability coefficient (P app ). Conclusions:A quantitative LC/ITMS/MS method using HCD was developed for the first time to selectively monitor GS 15 NO metabolites. The assay allowed evaluation of GS 15 NO intestinal permeability and situated this drug candidate within the middle permeability class according to FDA guidelines. In addition, the present method has opened the perspective of a more fundamental work aiming at studying the fragmentation mechanism leading to the ion at m/z 156 in HCD tandem mass spectrometry in the presence of acetonitrile.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.