Background: Immune profiling by flow cytometry is not always possible on fresh blood samples due to time and/or transport constraints. Besides, the cryopreservation of peripheral blood mononuclear cells (PBMC) requires on-site specialized lab facilities, thus severely restricting the extent by which blood immune monitoring can be applied to multicenter clinical studies. These major limitations can be addressed through the development of simplified whole blood freezing methods. Methods:In this report, we describe an optimized easy protocol for rapid whole blood freezing with the CryoStor ® CS10 solution. Using flow cytometry, we compared cellular viability and composition on cryopreserved whole blood samples to matched fresh blood, as well as fresh and frozen PBMC.Results: Though partial loss of neutrophils was observed, leucocyte viability was routinely >75% and we verified the preservation of viable T cells, NK cells, monocytes, dendritic cells and eosinophils in frequencies similar to those observed in fresh samples. A moderate decrease in B cell frequencies was observed. Importantly,we validated the possibility to analyze major intracellular markers, such as FOXP3 and Helios in regulatory T cells. Finally, we demonstrated good functional preservation of CS10-cryopreserved cells through the analysis of intracellular cytokine production in ex vivo stimulated T cells (IFNg, IL-4, IL-17A,) and monocytes (IL-1b, IL-6, TNFa). Conclusions:In conclusion, our protocol provides a robust method to apply reliable immune monitoring studies to cryopreserved whole blood samples, hence offering new important opportunities for the design of future multicenter clinical trials.
Background: Immune profiling by flow cytometry is not always possible on fresh blood samples due to time and/or transport constraints. Besides, the cryopreservation of peripheral blood mononuclear cells (PBMC) requires on-site specialized lab facilities, thus severely restricting the extent by which blood immune monitoring can be applied to multicenter clinical studies. These major limitations can be addressed through the development of simplified whole blood freezing methods. Methods: In this report, we describe an optimized easy protocol for rapid whole blood freezing with the CryoStor CS10 solution. Using flow cytometry, we compared cellular viability and composition on cryopreserved whole blood samples to matched fresh blood, as well as fresh and frozen PBMC. Results: Though partial loss of neutrophils was observed, leucocyte viability was routinely >75% and we verified the preservation of viable T cells, NK cells, monocytes, dendritic cells and eosinophils in frequencies similar to those observed in fresh samples. A moderate decrease in B cell frequencies was observed. Importantly, we validated the possibility to analyze major intracellular markers, such as FOXP3 and Helios in regulatory T cells. Finally, we demonstrated good functional preservation of CS10-cryopreserved cells through the analysis of intracellular cytokine production in ex vivo stimulated T cells (IFNg, IL-4, IL-17A,) and monocytes (IL-1b, IL-6, TNFa). Conclusions: In conclusion, our protocol provides a robust method to apply reliable immune monitoring studies to cryopreserved whole blood samples, hence offering new important opportunities for the design of future multicenter clinical trials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.