To investigate the responses of a natural microbial plankton community of coastal Mediterranean waters to warming, which are still poorly known, an in situ mesocosm experiment was carried out in Thau Lagoon during autumn 2018. Several microorganisms, including virio-, bacterio-, and phytoplankton < 10 µm in size, were monitored daily and analysed using flow cytometry for 19 consecutive days in six mesocosms. Three mesocosms (control) had the same natural water temperature as the lagoon, and the other three were warmed by + 3 °C in relation to the control temperature. The cytometric analyses revealed an unexpected community dominated by picophytoplanktonic cells, including Prochlorococcus-like and Picochlorum-like cells, which had not previously been found in Thau Lagoon. The experimental warming treatment increased the abundances of nanophytoplankton, cyanobacteria, bacteria and viruses during the experiment and triggered earlier blooms of cyanobacteria and picoeukaryotes. Only the abundance of Picochlorum-like cells was significantly reduced under warmer conditions. The growth and grazing rates of phytoplankton and bacterioplankton estimated on days 2 and 8 showed that warming enhanced the growth rates of most phytoplankton groups, while it reduced those of bacteria. Surprisingly, warming decreased grazing on phytoplankton and bacteria at the beginning of the experiment, while during the middle of the experiment it decreased the grazing on prokaryote only but increased it for eukaryotes. These results reveal that warming affected the Thau Lagoon plankton community from viruses to nanophytoplankton in fall, inducing changes in both dynamics and metabolic rates.
The response of coastal lagoon plankton communities to warming was studied during two in situ mesocosm experiments in spring and fall of 2018 in the Mediterranean. Phytoplankton biomass, gross primary production (GPP), community respiration (R), phytoplankton growth (µ), and loss (l) rates were estimated using high-frequency chlorophyll-a fluorescence and dissolved oxygen sensors, and daily sampling was used to evaluate the nutrient status and phytoplankton pigment functional groups. Warming strongly depressed the dominant phytoplankton functional groups, mainly the prymnesiophytes, diatoms (spring), and green flagellates (fall). It favored minor groups such as the dinoflagellates (spring) and diatoms (fall). In spring, warming depressed GPP and R by half; however, µ (+ 18%) and l (+ 37%) were enhanced. In contrast, both GPP and µ were enhanced by 21% and 28%, respectively, in fall, and no effects were observed for R and l. Warming strongly decreased phytoplankton biomass and oxygen production in spring, and enhanced them, to a lesser extent, in fall. This led to an overall loss of production over both seasons. This study improves understanding of the contrasting effects of warming during two productive seasons, which depend on plankton community composition and interactions between components and environmental conditions.
To assess the response of a natural plankton community to the future scenario of a warming of +3°C predicted for coastal Mediterranean regions, an in situ mesocosm experiment was carried out over 19 days in a Mediterranean coastal lagoon in 2018. During this experiment, a phytoplankton bloom occurred and the abundances of several cytometric groups of phytoplankton (cyanobacteria, picophytoplankton and nanophytoplankton) and bacteria (low- and high-nucleic acid bacteria), as well as their growth and grazing mortality rates and their carbon biomass, were studied over the course of the experiment. Experimental warming led to a significant reduction of 47% of the phytoplankton biomass in average, based on Chl-a concentrations. This reduction was also observed for nanophytoplankton abundances during the whole experiment and for eukaryotic picophytoplankton only during the bloom period. This result coincided with a significant decrease in orthophosphate concentrations under warming during the prebloom and bloom periods simultaneous to an increase in bacterial abundances. At the same time, the higher growth rates of bacteria and the lower ones of phytoplankton observed at the beginning of the bloom could suggest that competition between phytoplankton and bacteria for orthophosphate might have contributed to the phytoplankton biomass decrease under warming. In addition, higher grazing mortality rates of phytoplankton groups under warming, notably nanophytoplankton at the end of the bloom and in postbloom (by 59 to 626%), as well as eukaryotic picophytoplankton over the course of the experiment (by 58 to 255%) could also have contributed to the lower phytoplankton biomass under warming. Based on these results, estimations of average phytoplankton carbon biomass production and transfer showed reductions of 42 and 45%, respectively, under warming, whereas those of bacteria were enhanced by 13 and 8%, respectively. These results indicated that warming induced a shift at the base of the microbial food web, going toward a more bacteria-based system. This suggested that under future warming scenarios, the microbial food web could become less productive and could negatively affect the functioning of the whole food web in coastal waters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.