When designing hydrogels for tissue regeneration, differences in polymerization mechanism and network structure have the potential to impact cellular behavior. Poly(ethylene glycol) hydrogels were formed by free-radical photopolymerization of acrylates (chain-growth) or thiol-norbornenes (step-growth) to investigate the impact of hydrogel system (polymerization mechanism and network structure) on the development of engineered tissue. Bovine chondrocytes were encapsulated in hydrogels and cultured under free swelling or dynamic compressive loading. In the acrylate system immediately after encapsulation chondrocytes exhibited high levels of intracellular ROS concomitant with a reduction in hydrogel compressive modulus and higher variability in cell deformation upon compressive strain; findings that were not observed in the thiol-norbornene system. Long-term the quantity of sulfated glycosaminoglycans and total collagen was greater in the acrylate system, but the quality resembled that of hypertrophic cartilage with positive staining for aggrecan, collagens I, II, and X and collagen catabolism. The thiol-norbornene system led to hyaline-like cartilage production especially under mechanical loading with positive staining for aggrecan and collagen II and minimal staining for collagens I and X and collagen catabolism. Findings from this study confirm that the polymerization mechanism and network structure have long-term effects on the quality of engineered cartilage, especially under mechanical loading.
A photopolymerizable-tyraminated poly(vinyl alcohol) (PVA-Tyr) system that has the ability to covalently bind proteins in their native state was evaluated as a platform for cell encapsulation. However, a key hurdle to this system is the radicals generated during the cross-linking that can cause oxidative stress to the cells. This research hypothesized that incorporation of anti-oxidative proteins (sericin and gelatin) into PVA-Tyr gels would mitigate any toxicity caused by the radicals. The results showed that although incorporation of 1 wt% sericin promoted survival of the fibroblasts, both sericin and gelatin acted synergistically to facilitate long-term 3D cell function. The encapsulated cells formed clusters with deposition of laminin and collagen, as well as remaining metabolically active after 21 d.
This study presents a comparative investigation into differences in the mechanical properties between two hydrogels commonly used in cartilage tissue engineering [agarose vs. poly(ethylene glycol) (PEG)], but which are formed through distinctly different crosslinking mechanisms (physical vs. covalent, respectively). The effects of hydrogel chemistry, precursor concentration, platen type (nonporous vs. porous) used in compression bioreactors, and degradation (for PEG) on the swelling properties and static and dynamic mechanical properties were examined. An increase in precursor concentration resulted in decreased equilibrium mass swelling ratios but increased equilibrium moduli and storage moduli for both hydrogels (p < 0.05). Agarose displayed large stress relaxations and a frequency dependence indicating its viscoelastic properties. Contrarily, PEG hydrogels displayed largely elastic behavior with minimal stress relaxation and frequency dependence. In biodegradable PEG hydrogels, the largely elastic behavior was retained during degradation. The type of platen did not affect static mechanical properties, but porous platens led to a reduced storage modulus for both hydrogels implicating fluid flow. In summary, agarose and PEG exhibit vastly different mechanical behaviors; a finding largely attributed to differences in their chemistries and fluid movement. Taken together, these design choices (hydrogel chemistry/structure, loading conditions) will likely have a profound effect on the tissue engineering outcome.
PEG-LA hydrogels have potential for delivering chondrocytes in vivo to replace damaged cartilage with a tissue-engineered native equivalent, overcoming many limitations associated with current clinical treatments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.