Although crizotinib demonstrates robust efficacy in anaplastic lymphoma kinase (ALK)-positive non-small-cell lung carcinoma patients, progression during treatment eventually develops. Resistant patient samples revealed a variety of point mutations in the kinase domain of ALK, including the L1196M gatekeeper mutation. In addition, some patients progress due to cancer metastasis in the brain. Using structure-based drug design, lipophilic efficiency, and physical-property-based optimization, highly potent macrocyclic ALK inhibitors were prepared with good absorption, distribution, metabolism, and excretion (ADME), low propensity for p-glycoprotein 1-mediated efflux, and good passive permeability. These structurally unusual macrocyclic inhibitors were potent against wild-type ALK and clinically reported ALK kinase domain mutations. Significant synthetic challenges were overcome, utilizing novel transformations to enable the use of these macrocycles in drug discovery paradigms. This work led to the discovery of 8k (PF-06463922), combining broad-spectrum potency, central nervous system ADME, and a high degree of kinase selectivity.
SUMMARY We report the preclinical evaluation of PF-06463922, a potent and brain penetrant ALK/ROS1 inhibitor. Compared to other clinically available ALK inhibitors, PF-06463922 displayed superior potency against all known clinically acquired ALK mutations, including the highly resistant G1202R mutant. Furthermore, PF-06463922 treatment led to regression of EML4-ALK driven brain metastases, leading to prolonged mouse survival, in a superior manner. Finally, PF-06463922 demonstrated high selectivity and safety margins in a variety of preclinical studies. These results suggest that PF-06463922 will be highly effective for the treatment of patients with ALK-driven lung cancers, including those who relapsed on clinically available ALK inhibitors due to secondary ALK kinase domain mutations and/or due to the failed control of brain metastases.
Oncogenic c-ros oncogene1 (ROS1) fusion kinases have been identified in a variety of human cancers and are attractive targets for cancer therapy. The MET/ALK/ROS1 inhibitor crizotinib (Xalkori, PF-02341066) has demonstrated promising clinical activity in ROS1 fusion-positive non-small cell lung cancer. However, emerging clinical evidence has shown that patients can develop resistance by acquiring secondary point mutations in ROS1 kinase. In this study we characterized the ROS1 activity of PF-06463922, a novel, orally available, CNS-penetrant, ATP-competitive small-molecule inhibitor of ALK/ROS1. In vitro, PF-06463922 exhibited subnanomolar cellular potency against oncogenic ROS1 fusions and inhibited the crizotinib-refractory ROS1 G2032R mutation and the ROS1 G2026M gatekeeper mutation. Compared with crizotinib and the second-generation ALK/ROS1 inhibitors ceritinib and alectinib, PF-06463922 showed significantly improved inhibitory activity against ROS1 kinase. A crystal structure of the PF-06463922-ROS1 kinase complex revealed favorable interactions contributing to the high-affinity binding. Taken together, our results indicate that PF-06463922 has potential for treating ROS1 fusion-positive cancers, including those requiring agents with CNS-penetrating properties, as well as for overcoming crizotinib resistance driven by ROS1 mutation.PF-06463922 | ROS1 | kinase inhibitor R eceptor tyrosine kinases (RTKs) are vital conduits of extracellular signals that direct cell growth and survival pathways. Unregulated RTK activation through chromosomal rearrangements, point mutations, and gene amplification has been shown to be responsible for the initiation and progression of many cancers. The orphan RTK c-ros oncogene1 (ROS1) normally is expressed transiently in various tissues during development with little to no expression in adult tissues (1). Elevated full-length c-ROS1 expression levels have been observed in 20-30% of patients with nonsmall cell lung cancer (NSCLC) by gene expression profiling (2-4) and in 13% of patients with lung adenocarcinoma using immunohistochemistry (IHC) (5). However, its function, both in normal physiology and disease, remains poorly defined mainly because of its still unidentified ligand. Chromosomal rearrangements resulting in oncogenic activation of ROS1 have been observed in a subset of patients with glioblastoma (6-9), NSCLC (10-14), cholangiocarcinoma (15), ovarian cancer (16), angiosarcoma (17), inflammatory myofibroblastic tumors (18), and Spitzoid melanoma (19). To date, interchromosomal translocations or intrachromosomal deletions have resulted in the production of 20 different N-terminal ROS1 fusion genes in a variety of cancers (Table S1).ROS1 is a distinct receptor with a kinase domain that is phylogenetically related to the anaplastic lymphoma kinase/lymphocyte-specific protein tyrosine kinase (ALK/LTK) and insulin receptor (INSR) RTK families (20), suggesting that tyrosine kinase inhibitors for these receptors could have cross-activity against ROS1. A recent phase I/II cl...
Crizotinib (1), an anaplastic lymphoma kinase (ALK) receptor tyrosine kinase inhibitor approved by the U.S. Food and Drug Administration in 2011, is efficacious in ALK and ROS positive patients. Under pressure of crizotinib treatment, point mutations arise in the kinase domain of ALK, resulting in resistance and progressive disease. The successful application of both structure-based and lipophilic-efficiency-focused drug design resulted in aminopyridine 8e, which was potent across a broad panel of engineered ALK mutant cell lines and showed suitable preclinical pharmacokinetics and robust tumor growth inhibition in a crizotinib-resistant cell line (H3122-L1196M).
ABSTRACT:The effects of hepatic uptake and efflux transporters on erythromycin (ERY) disposition and metabolism were examined by comparing results from rat hepatic microsomes, freshly isolated hepatocytes, and in vivo studies. Uptake studies carried out in freshly isolated rat hepatocytes showed that ERY and its metabolite (Ndemethyl-ERY) are substrates of Oatp1a4 and Oatp1b2. Whereas rifampin and GG918 [GF120918: N-{4-[2-(1,2,3,4-tetrahydro-6,7-dimethoxy-2-isoquinolinyl)-ethyl]-phenyl}-9,10-dihydro-5-methoxy-9-oxo-4-acridine carboxamine] exerted minimal effects on metabolism in microsomes, rifampin (2.5 M) and GG918 (0.5 M) significantly decreased and increased ERY metabolism in hepatocytes, respectively. Concentration-time course studies further demonstrated that, compared with the intracellular N-demethyl-ERY control area under the curve (AUC) (0.795 ؎ 0.057 M ⅐ min), a decreased AUC (0.513 ؎ 0.028 M ⅐ min, p < 0.005) was observed when ERY was coincubated with rifampin, and an increased AUC (2.14 ؎ 0.21 M ⅐ min, p < 0.05) was found when GG918 was present. The results of the i.v. bolus studies showed that, compared with the ERY clearance of the controls (47.2 ؎ 12.5 ml/ min/kg for the rifampin group and 42.1 ؎ 5.7 for the GG918 group), a decreased blood clearance, 29.8 ؎ 6.1 ml/min/kg (p < 0.05) and 21.7 ؎ 9.0 ml/min/kg (p < 0.01), was observed when rifampin or GG918, respectively, was coadministered. When either inhibitor was codosed with ERY, volume of distribution at steady state was unchanged, but t 1/2 and mean residence time significantly increased compared with the controls. Hepatic uptake and efflux transporters modulate intracellular concentrations of ERY, thereby affecting metabolism. The interplay of transporters and enzymes must be considered in evaluating potential drug-drug interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.