The Al-1% Mg and Al-0.1% Mg alloys were both processed by high-pressure torsion (HPT) at room temperature. In the Al-1% Mg alloy, the hardness values in the disc centre area are lower than in the disc edge area after 1/2 and 1 turn, and the area of lower hardness values in the disc centre decreases as the number of turns increases from 1/2 to 1 turn. Finally, the hardness values are reasonably homogenous along the disc diameter as the number of turns increases to 5 and 10 turns. The Al-0.1% Mg alloy displays a different hardness evolution behavior: the hardness values in the disc centre are higher than at the disc edge 1/2 and 1 turn, and the area of higher hardness values decreases as the numbers of turn increases from 1/2 to 1 turn. The hardness values evolve towards homogeneity along the disc diameter after 5 and 10 turns. EBSD microstructure investigations in the Al-0.1% Mg alloy reveal that a few low-angle boundaries exist at the disc edge after 1/2 turn. It is suggested that the higher hardness values in the disc centre in the Al-0.1% Mg alloy are related to rapid recovery at the disc edge where the material is subjected to heavy straining.
An Al-0.1% Mg alloy is processed by high-pressure torsion (HPT) at room temperature. The Al-0.1% Mg alloy displays strain-softening phenomenon through hardness evolution: the hardness values in the disc center area are higher than at the disc edge area after 1/2, 1, and 3 turns, and the size of the hard region in the disc center gradually reduces as the number of turns increases from 1/2 to 3 turns. The hardness values evolve toward homogeneity along the disc diameters after 5 and 10 turns. Electron backscatter diffraction (EBSD) and X-ray line profile analysis suggest that the lower hardness values at the disc edge area in the Al-0.1% Mg alloy are related to a recovery/recrystallization mechanism where the material is subjected to heavy straining.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.