Marine Synechococcus cyanobacteria constitute a monophyletic group that displays a wide latitudinal distribution, ranging from the equator to the polar fronts. Whether these organisms are all physiologically adapted to stand a large temperature gradient or stenotherms with narrow growth temperature ranges has so far remained unexplored. We submitted a panel of six strains, isolated along a gradient of latitude in the North Atlantic Ocean, to long-and short-term variations of temperature. Upon a downward shift of temperature, the strains showed strikingly distinct resistance, seemingly related to their latitude of isolation, with tropical strains collapsing while northern strains were capable of growing. This behaviour was associated to differential photosynthetic performances. In the tropical strains, the rapid photosystem II inactivation and the decrease of the antioxydant b-carotene relative to chl a suggested a strong induction of oxidative stress. These different responses were related to the thermal preferenda of the strains. The northern strains could grow at 10 1C while the other strains preferred higher temperatures. In addition, we pointed out a correspondence between strain isolation temperature and phylogeny. In particular, clades I and IV laboratory strains were all collected in the coldest waters of the distribution area of marine Synechococus. We, however, show that clade I Synechococcus exhibit different levels of adaptation, which apparently reflect their location on the latitudinal temperature gradient. This study reveals the existence of lineages of marine Synechococcus physiologically specialised in different thermal niches, therefore suggesting the existence of temperature ecotypes within the marine Synechococcus radiation.
The marine cyanobacteria of the genus Synechococcus are important primary producers, displaying a wide latitudinal distribution that is underpinned by diversification into temperature ecotypes. The physiological basis underlying these ecotypes is poorly known. In many organisms, regulation of membrane fluidity is crucial for acclimating to variations in temperature. Here, we reveal the detailed composition of the membrane lipidome of the model strain Synechococcus sp. WH7803 and its response to temperature variation. Unlike freshwater strains, membranes are almost devoid of C18, mainly containing C14 and C16 chains with no more than two unsaturations. In response to cold, we observed a rarely observed process of acyl chain shortening that likely induces membrane thinning, along with specific desaturation activities. Both of these mechanisms likely regulate membrane fluidity, facilitating the maintenance of efficient photosynthetic activity. A comprehensive examination of 53 Synechococcus genomes revealed clade-specific gene sets regulating membrane lipids. In particular, the genes encoding desaturase enzymes, which is a key to the temperature stress response, appeared to be temperature ecotype-specific, with some of them originating from lateral transfers. Our study suggests that regulation of membrane fluidity has been among the important adaptation processes for the colonization of different thermal niches by marine Synechococcus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.