Nuclear magnetic resonance (NMR) spectroscopy is a powerful tool for qualitative and quantitative analysis. However, for complex mixtures, determining the speciation from NMR spectra can be tedious and sometimes even unfeasible. On the other hand, identifying and quantifying structural groups in a mixture from NMR spectra is much easier than doing the same for components. We call this group‐based approach “NMR fingerprinting.” In this work, we show that NMR fingerprinting can even be performed in an automated way, without expert knowledge, based only on standard NMR spectra, namely, 13C, 1H, and 13C DEPT NMR spectra. Our approach is based on the machine‐learning method of support vector classification (SVC), which was trained here on thousands of labeled pure‐component NMR spectra from open‐source data banks. We demonstrate the applicability of the automated NMR fingerprinting using test mixtures, of which spectra were taken using a simple benchtop NMR spectrometer. The results from the NMR fingerprinting agree remarkably well with the ground truth, which was known from the gravimetric preparation of the samples. To facilitate the application of the method, we provide an interactive website (https://nmr-fingerprinting.de), where spectral information can be uploaded and which returns the NMR fingerprint. The NMR fingerprinting can be used in many ways, for example, for process monitoring or thermodynamic modeling using group‐contribution methods—or simply as a first step in species analysis.
Am 09.11.2020 fand der 15. ChemCar Wettbewerb des VDI im Rahmen des ProcessNet‐Jahrestreffens Prozess‐, Apparat‐, Anlagenbau (PAAT) statt. Der von den kreativen jungen Verfahrensingenieuren (kjVI) organisierte internationale Wettbewerb wurde 2020 trotz al
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.