In recent years, there has been increased recognition of the importance of a nexus approach to optimize food, energy, and water (FEW) security at regional and global scales. Remote communities in the Arctic and Subarctic regions in Alaska provide unique examples of closed and isolated systems, wherein the FEW nexus not only needs to be examined to lend resilience to these vulnerable communities but that could also serve as small-scale test beds for a wider and systematic understanding of the FEW nexus. In this short communication, looking at the FEW nexus in Cordova, Alaska, through an energy lens, we introduce an approach (referred to as the “MicroFEWs approach”) that may assist remote communities in Alaska in making informed decisions regarding the use of renewable energy to increase FEW security. Our example uses the MicroFEWs approach to assess the impacts of increased renewable energy generation on FEW security in the community, more specifically to food security through potential changes to the community's fish processing industry. This approach can serve as a basis for investigating the FEW nexus in varying contexts and locales.
The food-energy-water (FEW) nexus describes interactions among domains that yield gains or tradeoffs when analyzed together rather than independently. In a project about renewable energy in rural Alaska communities, we applied this concept to examine the implications for sustainability and resilience. The FEW nexus provided a useful framework for identifying the cross-domain benefits of renewable energy, including gains in FEW security. However, other factors such as transportation and governance also play a major role in determining FEW security outcomes in rural Alaska. Here we show the implications of our findings for theory and practice. The precise configurations of and relationships among FEW nexus components vary by place and time, and the range of factors involved further complicates the ability to develop a functional, systematic FEW model. Instead, we suggest how the FEW nexus may be applied conceptually to identify and understand cross-domain interactions that contribute to long-term sustainability and resilience.
Food, energy, and water (FEW) are essential for human health and economic development. FEW systems are inextricably interlinked, yet individualized and variable. Consequently, an accurate assessment must include all available and proposed FEW components and their interconnections and consider scale, location, and scope. Remote Alaska locations are examples of isolated communities with limited infrastructure, accessibility, and extreme climate conditions. The resulting challenges for FEW reliability and sustainability create opportunities to obtain practical insights that may apply to other remote communities facing similar challenges. By creating energy distribution models (EDMs), a methodology is proposed, and a tool is developed to measure the impacts of renewable energy (RE) on small FEW systems connected to the microgrids of several Alaska communities. Observing the community FEW systems through an energy lens, three indices are used to measure FEW security: Energy–Water (EW), Energy–Food (EF), and Sustainable Energy (SE). The results indicate the impacts of RE on FEW infrastructure systems are highly seasonal, primarily because of the natural intermittence and seasonality of renewable resources. Overall, there is a large potential for RE integration to increase FEW security as well as a need for additional analysis and methods to further improve the resiliency of FEW systems in remote communities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.