Intensively managed open croplands are highly productive but often have deleterious environmental impacts. Temperate agroforestry potentially improves ecosystem functions, although comprehensive analysis is lacking. Here, we measured primary data on 47 indicators of seven ecosystem functions in croplands and 16 indicators of four ecosystem functions in grasslands to assess how alley-cropping agroforestry performs compared to open cropland and grassland. Carbon sequestration, habitat for soil biological activity, and wind erosion resistance improved for cropland agroforestry (P ≤ 0.03) whereas only carbon sequestration improved for grassland agroforestry (P < 0.01). In cropland agroforestry, soil nutrient cycling, soil greenhouse gas abatement, and water regulation did not improve, due to customary high fertilization rates. Alley-cropping agroforestry increased multifunctionality, compared to open croplands. To ameliorate the environmental benefits of agroforestry, more efficient use of nutrients is required. Financial incentives should focus on conversion of open croplands to alley-cropping agroforestry and incorporate fertilizer management.
Abstract. Near-surface wind speed is typically only measured by point observations. The actively heated fiber-optic (AHFO) technique, however, has the potential to provide high-resolution distributed observations of wind speeds, allowing for better spatial characterization of fine-scale processes. Before AHFO can be widely used, its performance needs to be tested in a range of settings. In this work, experimental results on this novel observational wind-probing technique are presented. We utilized a controlled wind tunnel setup to assess both the accuracy and the precision of AHFO under a range of operational conditions (wind speed, angles of attack and temperature difference). The technique allows for wind speed characterization with a spatial resolution of 0.3 m on a 1 s timescale. The flow in the wind tunnel was varied in a controlled manner such that the mean wind ranged between 1 and 17 m s−1. The AHFO measurements are compared to sonic anemometer measurements and show a high coefficient of determination (0.92–0.96) for all individual angles, after correcting the AHFO measurements for the angle of attack. Both the precision and accuracy of the AHFO measurements were also greater than 95 % for all conditions. We conclude that AHFO has the potential to measure wind speed, and we present a method to help choose the heating settings of AHFO. AHFO allows for the characterization of spatially varying fields of mean wind. In the future, the technique could potentially be combined with conventional distributed temperature sensing (DTS) for sensible heat flux estimation in micrometeorological and hydrological applications.
Abstract. Near-surface wind speed is typically only measured by point observations. The Actively Heated Fiber-Optic (AHFO) technique, however, has the potential to provide high-resolution distributed observations of wind speeds, allowing for better characterization of fine-scale processes. Before AHFO can be widely used, its performance needs to be tested in a range of settings. In this work, experimental results on this novel observational wind-probing technique are presented. We utilized a controlled wind-tunnel setup to assess both the accuracy and the precision of AHFO under a range of operational conditions. The technique allows for wind speed characterization with a spatial resolution of 0.3 m on a 1 s time scale. The flow in the wind tunnel was varied in a controlled manner, such that the mean wind, ranged between 1 and 17 m/s. The AHFO measurements are compared to sonic anemometer measurements and show a high overall correlation (0.85–0.98). Both the precision and accuracy of the AHFO measurements were also greater than 95 %. We conclude that the AHFO has potential to be employed as an outdoor observational technique. It allows for characterization of spatially varying fields of mean wind in complex terrain, such as in canopy flows or in sloping terrain. In the future, the technique could be combined with conventional Distributed Temperature Sensing (DTS) for turbulent heat flux estimation in micrometeorological/hydrological applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.