A series of water-soluble silver(i) complexes of the type [Ag(MTZ)2X] [MTZ = 1-(2-hydroxyethyl)-2-methyl-5-nitro-1H-imidazole (metronidazole drug); X = NO3(-), ClO4(-), CF3COO(-), BF4(-) and CH3SO3(-)] was synthesised by the reactions of various Ag(i) salts with metronidazole (MTZ). All the complexes were characterized by ESI-MS spectrometry, solution NMR ((1)H and (13)C) and IR spectroscopy, and elemental analysis. Further evidence for the formation and molecular structure of all the complexes was provided by X-ray single-crystal crystallography. The different counter ions affect the crystal packing of the complexes and thus have an impact on the final geometries. The antimicrobial activities of the complexes against two Gram-positive strains: Staphylococcus aureus ATCC 6538, Staphylococcus epidermidis ATCC 12228, three Gram-negative strains: Pseudomonas aeruginosa ATCC 15442, Escherichia coli ATCC 25922, Proteus hauseri ATCC 13315 and yeast Candida albicans ATCC 10231 were evaluated and compared with antibacterial and antifungal properties of appropriate silver salts, metronidazole and silver sulfadiazine drugs. The newly synthesized compounds exhibited significant antibacterial activity against Gram-positive bacteria, better than the referenced silver sulfadiazine. The best active silver(i)-metronidazole complex contains a methanesulphonate counter-ion. Moreover, the complex inhibited the growth of yeast Candida albicans at a concentration 3-fold lower than that required for silver sulfadiazine. In addition, the complexes containing a tetrafluoroborate and a perchlorate as counter-ions were characterized as effective antibacterial agents against the tested Gram-negative bacteria.
In previous papers, we have reported on the high antifungal and significant antibacterial activity against Gram-positive and Gram-negative bacteria of the water-soluble silver(I) complexes of metronidazole and derivatives of pyridine compared to silver nitrate. In the present study, the cytotoxic activity of the silver(I) complexes of metronidazole and 4-hydroxymethylpyridine was compared with that of silver nitrate. Metronidazole and 4-hydroxymethylpyridine were investigated using Balb/c 3T3 and HepG2 cell lines in order to evaluate the potential clinical application of silver(I) complexes. The cells were exposed for 72 h to compounds at eight concentrations. The cytotoxic concentrations (IC50) of the study compounds were assessed within four biochemical endpoints: mitochondrial activity, lysosomal activity, cellular membrane integrity, and total protein content. The investigated silver(I) complexes displayed comparable cytotoxicity to that of silver nitrate used in clinics. Mean cytotoxic concentrations calculated for investigated silver(I) complexes from concentration–response curves ranged from 2.13 to 26.5 µM. HepG2 cells were less sensitive to the tested complexes compared to fibroblasts (Balb/c 3T3). However, the most affected endpoint for HepG2 cells was cellular membrane damage. The cytotoxicity of both silver complexes was comparable for Balb/c 3T3 cells. The cytotoxic potential of the new silver(I) compounds compared to that of silver nitrate used in medicine indicates that they are safe and could be used in clinical practice. The presented results are yet more stimulating to further studies that evaluate the therapeutic use of silver complexes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.