Naja ashei is an African spitting cobra species closely related to N. mossambica and N. nigricollis. It is known that the venom of N. ashei, like that of other African spitting cobras, mainly has cytotoxic effects, however data about its specific protein composition are not yet available. Thus, an attempt was made to determine the venom proteome of N. ashei with the use of 2-D electrophoresis and MALDI ToF/ToF (Matrix-Assisted Laser Desorption/Ionization Time of Flight) mass spectrometry techniques. Our investigation revealed that the main components of analysed venom are 3FTxs (Three-Finger Toxins) and PLA2s (Phospholipases A2). Additionally the presence of cysteine-rich venom proteins, 5′-nucleotidase and metalloproteinases has also been confirmed. The most interesting fact derived from this study is that the venom of N. ashei includes proteins not described previously in other African spitting cobras—cobra venom factor and venom nerve growth factor. To our knowledge, there are currently no other reports concerning this venom composition and we believe that our results will significantly increase interest in research of this species.
One of the key problems of modern infectious disease medicine is the growing number of drug-resistant and multi-drug-resistant bacterial strains. For this reason, many studies are devoted to the search for highly active antimicrobial substances that could be used in therapy against bacterial infections. As it turns out, snake venoms are a rich source of proteins that exert a strong antibacterial effect, and therefore they have become an interesting research material. We analyzed Naja ashei venom for such antibacterial properties, and we found that a specific composition of proteins can act to eliminate individual bacterial cells, as well as the entire biofilm of Staphylococcus epidermidis. In general, we used ion exchange chromatography (IEX) to obtain 10 protein fractions with different levels of complexity, which were then tested against certified and clinical strains of S. epidermidis. One of the fractions (F2) showed exceptional antimicrobial effects both alone and in combination with antibiotics. The protein composition of the obtained fractions was determined using mass spectrometry techniques, indicating a high proportion of phospholipases A2, three-finger toxins, and L-amino acids oxidases in F2 fraction, which are most likely responsible for the unique properties of this fraction. Moreover, we were able to identify a new group of low abundant proteins containing the Ig-like domain that have not been previously described in snake venoms.
Honey is a natural sweetener composed mostly of sugars, but it contains also pollen grains, proteins, free amino acids, and minerals. The amounts and proportions of these components depend on the honey type and bee species. Despite the low content of honey protein, they are becoming a popular study object, and have recently been used as markers of the authenticity and quality of honey. Currently, the most popular methods of protein isolation from honey are dialysis against distilled water, lyophilization of dialysate, or various precipitation protocols. In this work, we propose a new method based on saturated phenol. We tested it on three popular polish honey types and we proved its compatibility with both 1D and 2D polyacrylamide gel electrophoresis (PAGE) and MS (mass spectrometry) techniques. The elaborated technique is also potentially less expensive and less time-consuming than other previously described methods, while being equally effective.
Simple Summary: Snake venom is mostly composed of proteins and peptides, which are of interest to many researchers due to their potential pharmacological properties. Due to their biochemical character, these components are analyzed using proteomic techniques such as electrophoresis, chromatography and mass spectrometry. A very important stage of such studies is the measurement of protein concentration in the sample, which is most often performed by colorimetric methods. In the presented article, we used five such techniques on venoms of two snake species, namely Agkistrodon contortrix and Naja ashei. In the case of A. contortrix venom, four methods provide similar concentration values, whereas, in the case of N. ashei, the differences between results are very significant. The source of these differences should probably be seen in the differences in amino acid composition of proteins of these two venoms. With this report, we would like to draw attention to the need to select an appropriate method for measuring the concentration of protein in the venom, especially in the case of Elapid species.Abstract: Snake venom is an extremely interesting natural mixture of proteins and peptides, characterized by both high diversity and high pharmacological potential. Much attention has been paid to the study of venom composition of different species and also detailed analysis of the properties of individual components. Since proteins and peptides are the active ingredients in venom, rapidly developing proteomic techniques are used to analyze them. During such analyses, one of the routine operations is to measure the protein concentration in the sample. The aim of this study was to compare five methods used to measure protein content in venoms of two snake species: the Viperids representative, Agkistrodon contortrix, and the Elapids representative, Naja ashei. The study showed that for A. contortrix venom, the concentration of venom protein measured by four methods is very similar and only the NanoDrop method clearly stands out from the rest. However, in the case of N. ashei venom, each technique yields significantly different results. We hope that this report will help to draw attention to the problem of measuring protein concentration, especially in such a complex mixture as animal venoms.
Proteins and amino acids are minor components of honey that are rarely used for its quality evaluation, although these components create its biological activity as well as can serve for overheating detection. The aim of the study was to use these indicators to confirm a declared on the label variety. Fifty-eight honey samples of 8 different varieties meeting the commercial quality requirements were used, including 28 local Polish and 30 commercial (mainly imported from EU and non-EU) honeys. For honey protein profiling previously used, polyacrylamide electrophoresis in denaturing conditions (SDS-PAGE) was applied whereas the free amino acid profile was analyzed by high-performance thin-layer chromatography (HPTLC) for the first time. As auxiliary indicators, the colorimetric determination of the protein content by the Bradford method, the activity of 5 glycolytic enzymes, including diastase, β-galactosidase, N-acetyl-β-glucosaminidase, α-mannosidase, and α-glucosidase, and the content of proline were used. It has been shown that based on the determined model protein SDS-PAGE profiles for selected monofloral honeys, it is possible to detect honeys of questionable variety based on the lack of specific protein bands or their diverging intensity. The HPTLC amino acid analysis can serve as a supporting control tool, capturing differences in the amino acid profile. Due to a great variation of multifloral honey, such assays are effective for monofloral honey only. The colorimetric assays, especially for total protein and β-galactosidase, can be also useful. The applied tools can be proposed for the initial verification of honey variety for cost reduction of officially recognized melissopalynological analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.