RationaleAffective biases are hypothesised to contribute to the cause and treatment of mood disorders. We have previously found that affective biases, associated with learning and memory, are observed following acute treatments with a range of antidepressant and pro-depressant manipulations.ObjectiveThis study aimed to test if similar biases are observed in male and female Sprague Dawley (SD) rats. We also test whether the stress hormone, corticosterone, induces a negative bias in the affective bias test (ABT) consistent with its putative role in the development of depression. We then use a meta-analysis to compare our findings with data published for the Lister Hooded rats.MethodsThe ABT uses a within-subject study design where animals learn to associate distinct digging substrates, encountered on different days, with the same value food reward. Exposure to one substrate is paired with a treatment manipulation (drug or environmental) and the other with a control condition. A preference test is used to test if the treatment has induced a positive or negative bias.ResultsConsistent with previous data, both male and female SD rats exhibit similar positive affective biases following treatment with the antidepressant, venlafaxine, and social play and negative affective biases following FG 7142 (benzodiazepine inverse agonist) and social stress. Acute treatment with corticosterone induced a negative bias.ConclusionsThese data add to the translational validity of the ABT and suggest that corticosterone can induce a negative affective bias following acute treatment, an effect which may contribute to its long-term effects on mood.
Summary Positive animal emotion (affect) is a key component of good animal welfare [ 1 ] and plays an important role in stress-coping and resilience [ 2 ]. Methods for reliably inducing and measuring positive affect are critical, but both have been limited in availability. In rats, one promising way of inducing positive affective states is by human-simulated rough and tumble play or ‘tickling’ [ 3 , 4 ]. However, in humans tickling induces both pleasure and displeasure, and neither an established non-verbal indicator of positive affect, the Duchenne smile, nor laughter detects this variation [ 5 , 6 ]. Rats also show individual differences in response to tickling [ 7 ], and this variation needs to be readily quantified if we are to ensure that tickling is only implemented where it generates positive affect. Here, we use a validated and objective measure of affective valence, the affective bias test [ 8 ], to show that 50 kHz ultrasonic vocalizations provide a quantifiable and graded measure of positive affect that accurately reflects the positive state induced by this human–rat interaction.
Early life adversity (ELA) is a risk factor for major depressive disorder (MDD), however the underlying mechanisms are not well understood. Clinical studies suggest that negative affective biases (the process whereby cognitive processes such as learning and memory and decision-making are modified by emotional state) represent a vulnerability factor for MDD. In this study we investigate the impact of ELA on affective biases and reward-associated behaviours in rats. Sprague Dawley rat pups underwent 14 days of postnatal maternal separation (180min/day from postnatal day 1: MS180) whilst control pups remained unhandled. In adulthood, affective biases associated with reward learning and decision-making were assessed using the affective bias test (ABT), or judgement bias task (JBT) respectively. Changes in motivation and reward sensitivity were tested in a progressive ratio (PR) schedule of operant responding and the sucrose preference test (SPT) respectively. We observed that MS180 animals expressed enhanced negative biases in response to acute corticosterone treatment but without effects on antidepressant-induced positive biases. ELA animals were impaired in their ability to develop appropriate biases in response to changes in reward value in a modified ABT but in the absence of any changes in reward sensitivity or motivation. No effects on decision-making were observed in the JBT but MS180 animals failed to develop the same more optimistic behavioural profile as controls in response to an increase in reward value. These findings suggest that ELA in rats increases vulnerability to negative affective biases and impairs animals' ability to appropriately learn reward value, independent of a reward sensitivity or changes in motivation. These data provide important evidence linking ELA with relevant neuropsychological impairments that may explain increased risk of developing MDD.
Understanding the neurobiology of major depressive disorder (MDD) remains one of the major challenges in neuroscience. The disease is heterogeneous in nature, and patients present with a varied symptom profile. Studies seeking to identify biomarkers for MDD diagnosis and treatment have not yet found any one candidate which achieves sufficient sensitivity and specificity. In this article, we consider whether neuropsychological impairments, specifically affective biases, could provide a behavioural biomarker. Affective biases are observed when emotional states influence cognitive function. These biases have been shown to influence a number of different cognitive domains with some specific deficits observed in MDD. It has also been possible to use these neuropsychological tests to inform the development of translational tasks for non-human species. The results from studies in rodents suggest that quantification of affective biases is feasible and may provide a reliable method to predict antidepressant efficacy as well as pro-depressant risk. Animal studies suggest that affective state-induced biases in learning and memory operate over a different time course to biases influencing decision-making. The implications for these differences in terms of task validity and future ideas relating to affective biases and MDD are discussed. We also describe our most recent studies which have shown that depression-like phenotypes share a common deficit in reward-related learning and memory which we refer to as a reward-induced positive bias. This deficit is dissociable from more typical measures of hedonic behaviour and motivation for reward and may represent an important and distinct form of reward deficit linked to MDD.
Early life adversity (ELA) is a risk factor for major depressive disorder (MDD), however the underlying mechanisms are not well understood. Clinical studies suggest that negative affective biases (the process whereby cognitive processes such as learning and memory and decision-making are modified by emotional state) represent a vulnerability factor for MDD. In this study we investigate the impact of ELA on affective biases and reward-associated behaviours in rats. Sprague Dawley rat pups underwent 14 days of postnatal maternal separation (180min/day from postnatal day 1: MS180) whilst control pups remained unhandled. In adulthood, affective biases associated with reward learning and decision-making were assessed using the affective bias test (ABT), or judgement bias task (JBT) respectively. Changes in motivation and reward sensitivity were tested in a progressive ratio (PR) schedule of operant responding and the sucrose preference test (SPT) respectively. We observed that MS180 animals expressed enhanced negative biases in response to acute corticosterone treatment but without effects on antidepressant-induced positive biases. ELA animals were impaired in their ability to develop appropriate biases in response to changes in reward value in a modified ABT but in the absence of any changes in reward sensitivity or motivation. No effects on decision-making were observed in the JBT but MS180 animals failed to develop the same more optimistic behavioural profile as controls in response to an increase in reward value. These findings suggest that ELA in rats increases vulnerability to negative affective biases and impairs animals' ability to appropriately learn reward value, independent of a reward sensitivity or changes in motivation. These data provide important evidence linking ELA with relevant neuropsychological impairments that may explain increased risk of developing MDD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.