The idea of central nervous system as one-man band favoring neurons is long gone. Now we all are aware that neurons and neuroglia are team players and constant communication between those various cell types is essential to maintain functional efficiency and a quick response to danger. Here, we summarize and discuss known and new markers of astroglial multiple functions, their natural heterogeneity, cellular interactions, aging and disease-induced dysfunctions. This review is focused on newly reported facts regarding astrocytes, which are beyond the old stereotypes. We present an up-to-date list of marker proteins used to identify a broad spectrum of astroglial phenotypes related to the various physiological and pathological nervous system conditions. The aim of this review is to help choose markers that are well-tailored for specific needs of further experimental studies, precisely recognizing differential glial phenotypes, or for diagnostic purposes. We hope it will help to categorize the functional and structural diversity of the astroglial population and ease a clear readout of future experimental results.
Treatment of tremors, such as in essential tremor (ET) and Parkinson’s disease (PD) is mostly ineffective. Exact tremor pathomechanisms are unknown and relevant animal models are missing. GABA-A receptor is a target for tremorolytic medications, but current non-selective drugs produce side effects and have safety liabilities. The aim of this study was a search for GABA-A subunit-specific tremorolytics using different tremor-generating mechanisms. Two selective positive allosteric modulators (PAMs) were tested. Zolpidem, targeting GABA-A α1, was not effective in models of harmaline-induced ET, pimozide- or tetrabenazine-induced tremulous jaw movements (TJMs), while the novel GABA-A α2/3 selective MP-III-024 significantly reduced both the harmaline-induced ET tremor and pimozide-induced TJMs. While zolpidem decreased the locomotor activity of the rats, MP-III-024 produced small increases. These results provide important new clues into tremor suppression mechanisms initiated by the enhancement of GABA-driven inhibition in pathways controlled by α2/3 but not α1 containing GABA-A receptors. Tremor suppression by MP-III-024 provides a compelling reason to consider selective PAMs targeting α2/3-containing GABA-A receptors as novel therapeutic drug targets for ET and PD-associated tremor. The possibility of the improved tolerability and safety of this mechanism over non-selective GABA potentiation provides an additional rationale to further pursue the selective α2/3 hypothesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.