Planning is a crucial component of short- and long-term municipal waste management. Establishing the relationships between the factors that determine the amount of waste generated by municipalities and forecasting the waste management needs plays a fundamental role in the development of effective planning strategies and implementation of sustainable development. Artificial Neural Network employed for verifying the forecasts pertaining to the amount of rainfall in Poland were presented in the studies. The proposed models included selected explanatory indices in order to reflect the impact of social, demographic and economic factors on the amount of generated waste. Mean squared error (MSE) and regression value (R) are used as indices of efficiency of the developed models. The ANN models exhibited high accuracy of forecasts at high R values (R = 0.914, R = 0.989) and low MSE values. Derived from the socioeconomic data for 2003–2019, the model predicts that the future waste generation in 2024 will increase by 2%. The results indicate that the employed ANN models are effective in predicting the amount of waste and can be considered a cost-effective approach to planning integrated waste management systems.
Groundwater quality monitoring in the vicinity of drilling sites is crucial for the protection of water resources. Selected physicochemical parameters of waters were marked in the study. The water was collected from 19 wells located close to a shale gas extraction site. The water quality index was determined from the obtained parameters. A secondary objective of the study was to test the capacity of the artificial neural network (ANN) methods to model the water quality index in groundwater. The number of ANN input parameters was optimized and limited to seven, which was derived using a multiple regression model. Subsequently, using the stepwise regression method, models with ever fewer variables were tested. The best parameters were obtained for a network with five input neurons (electrical conductivity, pH as well as calcium, magnesium and sodium ions), in addition to five neurons in the hidden layer. The results showed that the use of the parameters is a convenient approach to modeling water quality index with satisfactory and appropriate accuracy. Artificial neural network methods exhibited the capacity to predict water quality index at the desirable level of accuracy (RMSE = 0.651258, R = 0.9992 and R2 = 0.9984). Neural network models can thus be used to directly predict the quality of groundwater, particularly in industrial areas. This proposed method, using advanced artificial intelligence, can aid in water treatment and management. The novelty of these studies is the use of the ANN network to forecast WQI groundwater in an area in eastern Poland that was not previously studied—in Lublin.
Air pollution has a major impact on human health, especially in cities, and elevated concentrations of PMx are responsible for a large number of premature deaths each year. Therefore, the amount of PM10 in the air is monitored and forecasts are made to predict the air quality. In Poland, mainly deterministic models are used to predict air pollution. Accordingly, research efforts are being made to develop other models to forecast the ambient PM10 levels. The aim of the study was to compare the machine learning models for predicting PM10 levels in the air in the city of Lublin. The following machine learning models were used: Linear regression (LR), K-Nearest Neighbors Regression (KNNR), Support Vector Machine (SVM), Regression Trees (RT), Gaussian Process Regression Models (GPR), Artificial Neural Network (ANN) and Long Short-Term Memory network (LSTM). The collected data for three consecutive years (January 2017 to December 2019) were used to develop the models. In total, 19 parameters, covering meteorological variables and concentrations of several chemical species, were explored as potential predictors of PM10. The data used to build the models did not take into account the seasons. The algorithms achieved the following R2 values: 0.8 for LR, 0.79 for KNNR, 0.82 for SVM, 0.77 for RT, 0.89, 0.90 for ANN and 0.81 for LSTM. Research has shown that the selection of a machine learning model has a large impact on the quality of the results. In this research, the ANN model performed slightly better than other models. Then, an ANN was used to train a network with five output neurons to predict the approximate level of PM10 at different time points (PM level at a given time, after 1 h, after 6 h, after 12 h and after 24 h). The results showed that the developed and tuned ANN model is appropriate (R = 0.89). The model created in this way can be used to determine the risk of exceeding the PM10 alert level and to inform about the air quality in the region.
The aim of this paper is to present the potential of using neural network modelling for the prediction of the surface water quality index (WQI). An artificial neural network modelling has been performed using the physicochemical parameters (TDS, chloride, TH, nitrate, and manganese) as an input layer to the model, and the WQI as an output layer. The physicochemical parameters have been taken from five measuring stations of the river Warta in the years 2014-2018 via the Chief Inspectorate of Environmental Protection (GIOŚ). The best results of modelling were obtained for networks with 5 neurons in the hidden layer. A high correlation coefficient (general and within subsets) 0.9792, low level of MSE in each subset (training, test, validation), as well as RMSE at a level of 0.624507639 serve as a confirmation. Additionally, the maximum percentage of an error for WQI value did not exceed 4%, which confirms a high level of conformity of real data in comparison to those obtained during prediction. The aforementioned results clearly present that the ANN models are effective for the prediction of the value of the Surface water quality index and may be regarded as adequate for application in simulation by units monitoring condition of the environment.
Approximately 80000 tons of drilling waste is produced in Poland annually. This type of waste is relocated and deposited in waste neutralization plants or landfills. Eventually, it must be managed. Reuse of solid wastes might constitute a method of their utilization. The article investigates the use of drill cuttings, sewage sludge and sawdust for production of soil-like mixtures. The studies on evaluation of the possibility of economic application of soillike materials were carried out. The assessment was conducted on the basis of metal content in soil-like materials and plants cultivated on substrates produced of soil-like materials. In accordance with the valid legal regulations, the concentration of metals in soil-like materials enables their application on class II soils, i.e. arable land. The concentration of heavy metals in the plants cultivated on the substrates produced with soil-like materials is low and does not exceed the concentration of metals determined in animal feeding standards.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.