Medical technology innovation has improved patient monitoring in perioperative and intensive care medicine and continuous improvement in the technology is now a central focus in this field. Because data density increases with the number of parameters captured by patient-monitoring devices, its interpretation has become more challenging. Therefore, it is necessary to support clinicians in managing information overload while improving their awareness and understanding about the patient’s health status. Patient monitoring has almost exclusively operated on the single-sensor–single-indicator principle—a technology-centered way of presenting data in which specific parameters are measured and displayed individually as separate numbers and waves. An alternative is user-centered medical visualization technology, which integrates multiple pieces of information (e.g., vital signs), derived from multiple sensors into a single indicator—an avatar-based visualization—that is a meaningful representation of the real-world situation. Data are presented as changing shapes, colors, and animation frequencies, which can be perceived, integrated, and interpreted much more efficiently than other formats (e.g., numbers). The beneficial effects of these technologies have been confirmed in computer-based simulation studies; visualization technologies improved clinicians’ situation awareness by helping them effectively perceive and verbalize the underlying medical issue, while improving diagnostic confidence and reducing workload. This review presents an overview of the scientific results and the evidence for the validity of these technologies.
Background Nimodipine is routinely administered in patients with aneurysmal subarachnoid hemorrhage (aSAH). However, the effect of nimodipine on oxygen exchange in the lungs is insufficiently explored. Methods The study explored nimodipine medication in artificially ventilated patients with aSAH. The data collection period was divided into nimodipine-dependent (ND) and nimodipine-independent (NID) periods. Values for arterial partial pressure of oxygen (PaO2) and fraction of inspired oxygen (FiO2) were collected and compared between the periods. Patients were divided in those with lung injury (LI), defined as median Horowitz index (PaO2/FiO2) ≤40 kPa (≤300 mmHg), and without and in those with lower respiratory tract infection (LRTI) and without. Results A total of 53 out of 150 patients were artificially ventilated, and in 29 patients, the Horowitz index could be compared between ND and NID periods. A linear mixed model showed that during ND period the Horowitz index was 2.3 kPa (95% CI, 1.0–3.5 kPa, P<0.001) lower when compared to NID period. The model suggested that in the presence of LI, ND period is associated with a decrease of the index by 2.8 kPa (95% CI, 1.2–4.3 kPa, P<0.001). The decrease was more pronounced with LRTI than without: 3.4 kPa (95% CI, 0.8–6.1 kPa) vs. 2.1 kPa (95% CI, 0.7–3.4 kPa), P=0.011 and P=0.002, respectively. Conclusions In patients with LI or LRTI in the context of aSAH, pulmonary function may worsen with nimodipine treatment. The drop of 2 to 3 kPa of the Horowitz index in patients with no lung pathology may not outweigh the benefits of nimodipine. However, in individuals with concomitant lung injury, the effect may be clinically relevant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.