Commensal Escherichia coli, naturally occurring in the intestinal tract, can be the origin of extraintestinal pathogenic E. coli (ExPEC) strains. ExPEC causes high mortality and significant economic losses in the swine industry in several countries and poses a serious threat to public health worldwide. The aim of this study was to analyze the extended phylogenetic structure and extraintestinal virulence potential in two groups of commensal E. coli isolates from post-weaning piglets and sows. The phylogenetic assignment to eight groups was determined using the revised Clermont phylogenetic typing method in quadruplex PCR. Identification of extraintestinal virulence genes (VGs) and adhesin operon genes was performed using multiplex or simplex PCR. The revised phylogenetic assignment allowed us to distinguish E. coli with significantly higher (groups C and F) or lower (group E) virulence potential in isolates from piglets. The majority of the tested VGs occurred more frequently in isolates from piglets than from sows, with statistically significant differences for seven genes: fimH, papAH, iutA, iroN, ompT, traT, and iss. Complete operons for type I and P fimbriae significantly prevailed among E. coli from piglets. This study provides insight into the extended phylogenetic structure of porcine commensal E. coli and showed that these strains, particularly from piglets, constitute a considerable reservoir of extraintestinal VGs and may increase the potential risk of extraintestinal infections.
Background: In the oral and maxillofacial surgery, fixation plates are commonly used for the stabilization of bone fragments. Additive manufacturing has enabled us to design and create personalized fixation devices that would ideally fit any given fracture. Aim: The aim of the present preliminary study was to assess the susceptibility of 3D-printed titanium fixation plates to biofilm formation. Methods: Plates were manufactured using selective laser melting (SLM) from Ti-6Al-4 V. Reference strains of Streptococcus mutans, Staphyloccocus epidermidis, Staphylococcus aureus, Lactobacillus rhamnosus , and Candida albicans , were tested to evaluate the material’s susceptibility to biofilm formation over 48 hours. Biofilm formations were quantified by a colorimetric method and colony-forming units (CFU) quantification. Scanning electron microscopy (SEM) visualized the structure of the biofilm. Results: Surface analysis revealed the average roughness of 102.75 nm and irregular topography of the tested plates. They were susceptible to biofilm formation by all tested strains. The average CFUs were as follows: S. mutans (11.91 x 10 7 ) > S.epidermidis (4.45 x 10 7 ) > S. aureus (2.3 x 10 7 ) > C.albicans (1.22 x 10 7 ) > L. rhamnosus (0.78 x 10 7 ). Conclusions: The present preliminary study showed that rough surfaces of additively manufactured titanium plates are susceptible to microbial adhesion. The research should be continued in order to compare additively manufactured plates with other commercially available osteotomy plates. Therefore, we suggest caution when using this type of material.
Antibiotic resistance concerns various areas with high consumption of antibiotics, including husbandry. Resistant strains are transmitted to humans from livestock and agricultural products via the food chain and may pose a health risk. The commensal microbiota protects against the invasion of environmental strains by secretion of bacteriocins, among other mechanisms. The present study aims to characterize the bactericidal potential of bacteriocinogenic Escherichia coli from healthy humans against multidrug-resistant and antibiotic-sensitive strains from pigs and cattle. Bacteriocin production was tested by the double-layer plate method, and bacteriocin genes were identified by the PCR method. At least one bacteriocinogenic E. coli was detected in the fecal samples of 55% of tested individuals, adults and children. Among all isolates (n = 210), 37.1% were bacteriocinogenic and contained genes of colicin (Col) Ib, ColE1, microcin (Mcc) H47, ColIa, ColM, MccV, ColK, ColB, and single ColE2 and ColE7. Twenty-five E. coli carrying various sets of bacteriocin genes were further characterized and tested for their activity against zoonotic strains (n = 60). Strains with ColE7 (88%), ColE1-ColIa-ColK-MccH47 (85%), MccH47-MccV (85%), ColE1-ColIa-ColM (82%), ColE1 (75%), ColM (67%), and ColK (65%) were most active against zoonotic strains. Statistically significant differences in activity toward antibiotic-resistant strains were shown by commensal E. coli carrying MccV, ColK-MccV, and ColIb-ColK. The study demonstrates that bacteriocinogenic commensal E. coli exerts antagonistic activity against zoonotic strains and may constitute a defense line against multidrug-resistant strains.
Background Temporary implant-retained restorations are required to support function and esthetics of the masticatory system until the final restoration is completed and delivered. Acrylic resins are commonly used in prosthetic dentistry and lately they have been used in three-dimensional (3D) printing technology. Since this technology it is fairly new, the number of studies on their susceptibility to microbial adhesion is low. Restorations placed even for a short period of time may become the reservoir for microorganisms that may affect the peri-implant tissues and trigger inflammation endangering further procedures. The aim of the study was to test the biofilm formation on acrylamide resins used to fabricate temporary restorations in 3D printing technology and to assess if the post-processing impacts microbial adhesion. Methods Disk-shaped samples were manufactured using the 3D printing technique from three commercially available UV-curable resins consisting of acrylate and methacrylate oligomers with various time and inhibitors of polymerization (NextDent MFH bleach, NextDent 3D Plus, MazicD Temp). The tested samples were raw, polished and glazed. The ability to create biofilm by oral streptococci (S. mutans, S. sanguinis, S. oralis, S. mitis) was tested, as well as species with higher pathogenic potential: Staphylococcus aureus, Staphylococcus epidermidis and Candida albicans. The roughness of the materials was measured by an atomic force microscope. Biofilm formation was assessed after 72 h of incubation by crystal violet staining with absorbance measurement, quantification of viable microorganisms, and imaging with a scanning electron microscope (SEM). Results Each tested species formed the biofilm on the samples of all three resins. Post-production processing resulted in reduced roughness parameters and biofilm abundance. Polishing and glazing reduced roughness parameters significantly in the NextDent resin group, while glazing alone caused significant surface smoothing in Mazic Temp. A thin layer of microbial biofilm covered glazed resin surfaces with a small number of microorganisms for all tested strains except S. oralis and S. epidermidis, while raw and polished surfaces were covered with a dense biofilm, rich in microorganisms. Conclusions UV-curing acrylic resins used for fabricating temporary restorations in the 3D technology are the interim solution, but are susceptible to adhesion and biofilm formation by oral streptococci, staphylococci and Candida. Post-processing and particularly glazing process significantly reduce bacterial biofilm formation and the risk of failure of final restoration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.