IntroductionSince April 2020, when the first SARS-CoV-2 infection was reported in mink and subsequently in mink farm workers in the Netherlands, it has been confirmed that human-to-mink and mink-to-human transmission can occur. Later, SARS-CoV-2 infections in mink were reported in many European and North American countries.Material and methodsSamples from 590 mink from a total of 28 farms were tested by real-time RT-PCR. Whole genome sequences from one positive farm were generated and genetic relatedness was established.ResultsSARS-CoV-2 RNA was detected on a breeder farm with stock of 5,850 mink. Active viraemia was confirmed in individually tested samples with Ct values respectively between 19.4 and 29.6 for E and N gene fragments. Further testing of samples from culled animals revealed 70% positivity in throat swabs and 30% seropositivity in blood samples. Phylogenetic analysis of full-length nucleotide sequences of two SARS-CoV-2 isolates revealed that they belong to the 20B Nextstrain clade. Several nucleotide mutations were found in analysed samples compared to the reference Wuhan HU-1 strain and some of them were nonsynonymous.ConclusionWe report the infection of mink with SARS-CoV-2 on one farm in Poland and the results of subsequent analysis of virus sequences from two isolates. These data can be useful for assessment of the epidemiological situation of SARS-CoV-2 in Poland and how it endangers public health.
Infectious bronchitis virus (IBV) is one of the most important poultry pathogens, leading significant economic losses worldwide. IBV is characterised by highly genetic, serotype, and pathotypic variability. Despite extensive immunoprophylaxis strategies, the emergence of new genetic lineages is frequently observed in the field, causing disease control to be more complicated. In the last decade, the spread of variants assigned to the GI-23 lineage of IBV (formerly known as Var2) started from Middle-Eastern countries and reached Europe in the last few years. Recently, the introduction and fast spread of Var2-like IBVs in Poland was reported. In this study, the virulence properties and efficacy of different vaccination programmes were evaluated against infection with the IBV GI-23 strain gammaCoV/Ck/Poland/G052/2016. The pathogenicity of the Var2 isolate was conducted in one-day-old and three-week-old SPF chickens and showed that the course of the disease is age dependent. Seven vaccination programmes using Mass, 793B, QX alone or in combination, and Var2 live vaccines were tested against the GI-23 infectious bronchitis virus challenge. All groups were scored according to the ciliostasis test at 5 days post challenge. Two immunoprophylaxis strategies generated full protection against gammaCoV/Ck/Poland/G052/2016 infection—Var2 and Mass used in one-day-old chickens boosted by a combination of the QX and 793B vaccine (both with a ciliostasis score of 0 and 100% protection).
In late 2022 and early 2023, SARS-CoV-2 infections were detected on three mink farms in Poland situated within a few km from each other. Whole-genome sequencing of the viruses on two of the farms showed that they were related to a virus identified in humans in the same region 2 years before (B.1.1.307 lineage). Many mutations were found, including in the S protein typical of adaptations to the mink host. The origin of the virus remains to be determined.
Introduction Many countries have reported severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) infections in mink, and transmission back to humans has raised the concern of novel variants emerging in these animals. The monitoring system on Polish mink farms detected SARS-CoV-2 infection first in January 2021 and has been kept in place since then. Material and Methods Oral swab samples collected between February 2021 and March 2022 from 11,853 mink from 594 farms in different regions of Poland were screened molecularly for SARS-CoV-2. Isolates from those with the highest loads of viral genetic material from positive farms were sequenced and phylogenetically analysed. Serological studies were also carried out for one positive farm in order to follow the antibody response after infection. Results SARS-CoV-2 RNA was detected in mink on 11 farms in 8 out of 16 Polish administrative regions. Whole genome sequences were obtained for 19 SARS-CoV-2 strains from 10 out of 11 positive farms. These genomes belonged to four different variants of concern (VOC) – VOC-Gamma (20B), VOC-Delta (21J), VOC-Alpha (20I) and VOC-Omicron (21L) – and seven different Pango lineages – B.1.1.464, B.1.1.7, AY.43, AY.122, AY.126, B.1.617.2 and BA.2. One of the nucleotide and amino acid mutations specific for persistent strains found in the analysed samples was the Y453F host adaptation mutation. Serological testing of blood samples revealed a high rate of seroprevalence on the single mink farm studied. Conclusion Farmed mink are highly susceptible to infection with SARS-CoV-2 of different lineages, including Omicron BA.2 VOC. As these infections were asymptomatic, mink may become an unnoticeable virus reservoir generating new variants potentially threatening human health. Therefore, real-time monitoring of mink is extremely important in the context of the One Health approach.
The only knowledge of the molecular structure of European turkey coronaviruses (TCoVs) comes from France. These viruses have a quite distinct S gene from North American isolates. The aim of the study was to estimate the prevalence of TCoV strains in a Polish turkey farm during a twelve-year period, between 2008 and 2019, and to characterize their full-length S gene. Out of the 648 flocks tested, 65 (10.0%, 95% CI: 7.9–12.6) were positive for TCoV and 16 of them were molecularly characterized. Phylogenetic analysis showed that these strains belonged to two clusters, one formed by the early isolates identified at the beginning of the TCoV monitoring (from 2009 to 2010), and the other, which was formed by more recent strains from 2014 to 2019. Our analysis of the changes observed in the deduced amino acids of the S1 protein suggests the existence of three variable regions. Moreover, although the selection pressure analysis showed that the TCoV strains were evolving under negative selection, some sites of the S1 subunit were positively selected, and most of them were located within the proposed variable regions. Our sequence analysis also showed one TCoV strain had recombined with another one in the S1 gene. The presented investigation on the molecular feature of the S gene of TCoVs circulating in the turkey population in Poland contributes interesting data to the current state of knowledge.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.