<abstract><p>In this manuscript, we analyze the existence, uniqueness and Ulam's stability for Caputo proportional fractional integro-differential equation involving mixed nonlocal conditions with respect to another function. The uniqueness result is proved via Banach's fixed point theorem and the existence results are established by using the Leray-Schauder nonlinear alternative and Krasnoselskii's fixed point theorem. Furthermore, by using the nonlinear analysis techniques, we investigate appropriate conditions and results to study various different types of Ulam's stability. In addition, numerical examples are also constructed to demonstrate the application of the main results.</p></abstract>
<abstract><p>In this manuscript, we study the existence and Ulam's stability results for impulsive multi-order Caputo proportional fractional pantograph differential equations equipped with boundary and integral conditions with respect to another function. The uniqueness result is proved via Banach's fixed point theorem, and the existence results are based on Schaefer's fixed point theorem. In addition, the Ulam-Hyers stability and Ulam-Hyers-Rassias stability of the proposed problem are obtained by applying the nonlinear functional analysis technique. Finally, numerical examples are provided to supplement the applicability of the acquired theoretical results.</p></abstract>
A mathematical model for the dynamic systems of $\mathbb{SMA}$
SMA
involving the $\mathbb{ABC}$
ABC
-fractional derivative is considered in this manuscript. We examine the basic reproduction number and analyze the stability of the equilibrium points. We prove the theoretical results of the existence and Ulam’s stability of the solutions for the proposed model using fixed point theory and nonlinear analytic techniques. Using the Adams type predictor–corrector rule for the $\mathbb{ABC}$
ABC
-fractional integral operator, a numerical scheme is devised for obtaining the approximate solution of the proposed model. Different numerical plots corresponding to various fractional orders are presented. In addition, we demonstrate a numerical simulation for the transmission of social media addiction in two cases with the basic reproduction numbers greater than and less than one.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.