Lanzhou Lily (Lilium davidii var. unicolor) is a traditional medicinal plant and popular edible vegetable bulb in China. In this study, the polysaccharides of Lanzhou Lily (LLPs) were extracted by polyethylene glycol-based ultrasonic-assisted enzymatic extraction method (PEG-UAEE). The optimum process conditions were obtained by single-factor experiments and response surface methodology (RSM). Then, the preliminarily structure of LLPs was characterized by HPLC, FT-IR, and SEM, and its antioxidant activities were evaluated. The results showed that LLPs yield reached 14.75% under the optimized conditions: E/S ratio 1,400 U/g; pH 5.0, ultrasonic time 30 min; and ultrasonic temperature 50 °C. The LLPs has pyranoid ring, uronic acid, and the characteristic absorption peaks of -OH, C = O, and C-H. The results of scanning electron microscope indicated that the LLPs had irregular distribution, dispersed structure, and many holes. The HPLC analysis showed that the LLPs were heteropolysaccharide containing galactose (6.36%), glucose (76.03%), rhamnose (2.02%), and arabinose (7.09%). Moreover, the LLPs showed obvious antioxidant effect in vitro.
IntroductionArctium lappa L. root has high nutritional and medicinal values and has been identified as a healthy food raw material by the Ministry of Health of the People's Republic of China.MethodsIn the present study, an aqueous two-phase system (ATPS) of polyethylene glycol (PEG)-(NH4)2SO4 was used to extract Arctium lappa L. polysaccharides (ALPs) from the Arctium lappa L. roots, the optimal extraction conditions of crude ALPs were optimized by using the single-factor experiment and response surface methodology. The structure and composition of ALPs were determined by fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and high-performance liquid chromatography (HPLC). At the same time, the antioxidant activity of ALPs was investigated by in vitro antioxidant experiment.ResultsThe optimized extraction parameters for extraction ALPs were as follows: the PEG relative molecular weight of 6,000, a quality fraction of PEG 25%, a quality fraction of (NH4)2SO4 18%, and an extraction temperature of 80°C. Under these conditions, the extraction rate of ALPs could reach 28.83%. FTIR, SEM and HPLC results showed that ALPs were typical acidic heteropolysaccharides and had uneven particle size distribution, an irregular shape, and a rough surface. The ALPs were chiefly composed of glucose, rhamnose, arabinose, and galactose with a molar ratio of 70.19:10.95:11.16:6.90. In addition, the ALPs had intense antioxidant activity in vitro with IC50 values in the ·OH radical (1.732 mg/ml), DPPH radical (0.29 mg/ml), and superoxide anion (0.15 mg/ml) scavenging abilities.DiscussionThe results showed that ATPS was an efficient method to extract polysaccharides and could be used for the extraction of other polysaccharides. These results indicated that ALPs had great prospects as a functional food and could be exploited in multiple fields.
The objective of this study was to investigate the cellulose degradation rate (CDR) and lignin degradation rate (LDR) of Codonopsis pilosula straw (CPS) and the optimal fermentation parameters for mixed fungal fermentation. Single-factor tests were used to study the effects of the fungal ratio (Trichoderma reesei: Coprinus comatus), fungal inoculum, corn flour content, and fermentation time on the degradation rate of cellulose and lignin. Based on the results of this experiment, the optimal fermentation factors were identified, and the effects of various factors and their interactions on the degradation rates of cellulose and lignin were further evaluated using the response surface method. The quadratic polynomial mathematical model of degradation rates of the cellulose and lignin in CPS by mixed fungus fermentation was established using Design Expert software v8.0.6. Under the optimal parameters for fungal fermentation of CPS straw (fungal ratio 4:6, fungal inoculum 8%, corn flour content 10%, fermentation time of 15 d), the CDR and LDR reached 13.65% and 10.73%, respectively. Collectively, the mixed fungal fermentation of CPS resulted in decreased lignin and cellulose content, better retention of nutrients, and enhanced fermentation quality. The results of this study indicate that fermentation using Trichoderma reesei and Coprinus comatus is a productive method for straw degradation, providing a theoretical basis for the development of CPS as feed.
Sibiraea laexigata (L.) Maxim (SLM) has been used as an herbal tea for treating stomach discomfort and indigestion for a long time in china. Polysaccharides have been identified as one of the major bioactive compounds in the SLM. In the present paper, ultrasonic-assisted enzymatic extraction (UAEE) method was employed in polysaccharides extraction derived from SLM using polyethylene glycol (PEG) as extraction solvent, two SLM polysaccharides (SLMPs) fractions (SLMPs-1-1 and SLMPs-2-1) were purified by DEAE Cellulose-52 and Sephadex G-100 chromatography in sequence. Then, the preliminarily structure of the two factions were characterized by chemical composition analysis, molecular weight measurement, UVS, HPLC-PMP, FT-IR, nuclear magnetic resonance (NMR) spectra analysis and SEM. The results showed that SLMPs-1-1 and SLMPs-2-1 with different molecular weights of 1.03 and 1.02 kDa, mainly composed of glucose (46.76 and 46.79%), respectively. The results of structural characterization from FT-IR, 1 H NMR, and SEM revealed that SLMPs-1-1 and SLMPs-2-1 contained the typical pyranoid polysaccharide with α-glycosidic bond and β-glycosidic bond. Furthermore, it was found that SLMPs-1-1 could increase the levels of tumor necrosis factor-α (TNF-α) and interleukin-2 (IL-2), and alleviated the immune organs tissue damage of cyclophosphamide (Cy)-treated mice. RT-qPCR and Western-Blot analysis showed that SLMPs-1-1 could significantly up-regulated the levels of NF-κB, TLR4, which revealed that SLMPs-1-1 could participate in immunosuppressive protection of Cy-treated mice. These findings suggested that the potential of SLMPs-1-1 as an alternative immunostimulator could be used in food and pharmaceutical industries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.