Carbon-based solid acid catalysts were successfully obtained via one-step hydrothermal carbonization (HTC) of water hyacinth (WH) in the presence of p-toluenesulfonic acid (PTSA). Increasing the HTC temperature from 180 to 240 °C resulted in carbonaceous materials with increased sulfur content and less adsorbed water. The material obtained at 220 °C (WH-PTSA-220) contains the highest amount of acid sites and promotes the highest initial rate of two transformations, that is, methanolysis of oleic acid and dehydration of xylose to furfural. While all PSTA-treated WH catalysts gave comparable fatty acid conversions (≈97 %) and furfural yields (≈60 %) after prolonged reaction times, the WH-PTSA-240 system bearing a relatively low acid density maintains the most favorable reusability profile. Higher HTC temperatures (220-240 °C) improved the catalyst reusability profiles due to graphitization and hydrophobicity of the carbon surface. The catalyst systems derived herein from biomass may have potential applications in biorefining platforms, utilizing the conversion of waste biomass to chemicals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.