Chronic lung hypoxia causes vascular remodeling with pulmonary artery smooth muscle cell (SMCPA) hyperplasia, resulting in pulmonary hypertension and cor pulmonale. We investigated SMCPA and pulmonary artery adventitial fibroblasts (FBPA) for their proliferative response to hypoxia. Strong SMCPA growth occurred under hypoxic conditions in SMCPA/FBPA co-cultures, but not in SMCPA monocultures. SMCPA growth was fully reproduced by transferring serum-free supernatant from hypoxic cultured FBPA to normoxic SMCPA. Hypoxia-inducible-transcription-factor subtypes (HIF-1alpha, HIF-2alpha, HIF-3alpha) and its dependent target genes, carrying the hypoxia-responsive-element as regulatory component, were strongly activated in both hypoxic FBPA and SMCPA. HIF-transcription-factor decoy technique, employed to FBPA during hypoxic culturing, blocked the mitogenic activity of FBPA conditioned medium on SMCPA. The data suggest that hypoxia-driven gene regulation in pulmonary artery fibroblasts results in a mitogenic stimulus on adjacent pulmonary artery smooth muscle cells, and HIF-transcription-decoy may offer a new therapeutic approach to suppress these events.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.