A direct three dimensional EIT reconstruction algorithm based on complex geometrical optics solutions and a nonlinear scattering transform is presented and implemented for spherically symmetric conductivity distributions. The scattering transform is computed both with a Born approximation and from the forward problem for purposes of comparison. Reconstructions are computed for several test problems. A connection to Calderón's linear reconstruction algorithm is established, and reconstructions using both methods are compared.
Conventional ray-based techniques for analyzing common-midpoint (CMP) ground-penetrating radar (GPR) data use part of the measured data and simplified approximations of the reality to return qualitative results with limited spatial resolution. Whereas these methods can give reliable values for the permittivity of the subsurface by employing only the phase information, the far-field approximations used to estimate the conductivity of the ground are not valid for near-surface on-ground GPR, such that the estimated conductivity values are not representative for the area of investigation. Full-waveform inversion overcomes these limitations by using an accurate forward modeling and inverts significant parts of the measured data to return reliable quantitative estimates of permittivity and conductivity. Here, we developed a full-waveform inversion scheme that uses a 3D frequency-domain solution of Maxwell’s equations for a horizontally layered subsurface. Although a straightforward full-waveform inversion is relatively independent of the permittivity starting model, inaccuracies in the conductivity starting model result in erroneous effective wavelet amplitudes and therefore in erroneous inversion results, because the conductivity and wavelet amplitudes are coupled. Therefore, the permittivity and conductivity are updated together with the phase and the amplitude of the source wavelet with a gradient-free optimization approach. This novel full-waveform inversion is applied to synthetic and measured CMP data. In the case of synthetic single layered and waveguide data, where the starting model differs significantly from the true model parameter, we were able to reconstruct the obtained model properties and the effective source wavelet. For measured waveguide data, different starting values returned the same wavelet and quantitative permittivities and conductivities. This novel approach enables the quantitative estimation of permittivity and conductivity for the same sensing volume and enables an improved characterization for a wide range of applications.
Ground‐penetrating radar (GPR) data affected by waveguide dispersion are not straightforward to analyse. Therefore, waveguide dispersed common midpoint measurements are typically interpreted using so‐called dispersion curves, which describe the phase velocity as a function of frequency. These dispersion curves are typically evaluated with deterministic optimization algorithms that derive the dielectric properties of the subsurface as well as the location and depth of the respective layers. However, these methods do not provide estimates of the uncertainty of the inferred subsurface properties. Here, we applied a formal Bayesian inversion methodology using the recently developed DiffeRential Evolution Adaptive Metropolis DREAM(ZS) algorithm. This Markov Chain Monte Carlo simulation method rapidly estimates the (non‐linear) parameter uncertainty and helps to treat the measurement error explicitly. We found that the frequency range used in the inversion has an important influence on the posterior parameter estimates, essentially because parameter sensitivity varies with measurement frequency. Moreover, we established that the measurement error associated with the dispersion curve is frequency dependent and that the estimated model parameters become severely biased if this frequency‐dependent nature of the measurement error is not properly accounted for. We estimated these frequency‐dependent measurement errors together with the model parameters using the DREAM(ZS) algorithm. The posterior distribution of the model parameters derived in this way compared well with inversion results for a reduced frequency bandwidth which is an alternative, yet subjective method to reduce the bias introduced by this frequency‐dependent measurement error. Altogether, our inversion procedure provides an integrated and objective methodology for the analysis of dispersive GPR data and appropriately treats the measurement error and parameter uncertainty.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.