N-acetyltransferase 1 (NAT1)-mediated N-acetylation in keratinocytes is an important detoxification pathway for the hair dye ingredient para-phenylenediamine (PPD). Because NAT1 can be regulated by various exogenous compounds, including some NAT1 substrates themselves, we investigated NAT1 expression in keratinocytes and the interactions between PPD and NAT1. NAT1 activity was found to be cell-cycle phasedependent. Maximum NAT1 activities (mean: 49.7 nmol/mg/ min) were estimated when HaCaT keratinocytes were arrested in G 0 /G 1 phase, whereas nonsynchronized cells showed the lowest activities (mean: 28.9 nmol/mg/min). It is noteworthy that we also found an accelerated progression through the cell cycle in HaCaT cells with high NAT1 activities. This evidence suggests an association between NAT1 and proliferation in keratinocytes. Regarding the interaction between NAT1 and PPD, we found that keratinocytes N-acetylate PPD; however, this N-acetylation was saturated with increasing PPD concentrations. HaCaT cultured in medium supplemented with PPD (10 -200 M) for 24 h showed a significant concentration-dependent decrease (17-50%) in NAT1 activity. PPD also induced down-regulation of NAT1 activity in human primary keratinocytes. Western blot studies using a NAT1-specific antibody in HaCaT showed that the loss of enzyme activity was associated with a decline in the amount of NAT1 protein, whereas no changes in the amounts of NAT1 P1 (NATb)-dependent mRNA were found by quantitative reverse transcription-polymerase chain reaction analysis, suggesting the involvement of a substrate-dependent mechanism of NAT1 down-regulation. In conclusion, these data show that overall N-acetylation capacity of keratinocytes and consequently detoxification capacities of human skin is modulated by the presence of NAT1 substrates and endogenously by the cell proliferation status of keratinocytes.
Since animal testing should be avoided whenever possible, the development of in vitro tests for predicting the effect of chemicals becomes a major field. This rise of in vitro test systems led to an increased requirement for well-characterized continuously growing cell lines. Monitoring of the cells during test and routine culture is necessary to gain relevant and reproducible results. In the present study, the influence of passaging under constant culture conditions on the human keratinocyte cell line HaCaT was investigated. Data demonstrated that growth rate rose with increasing passages. Doubling times of the cells were decreased to 24 ± 0.6 h in the late passages (12-16), in comparison to 36.2 ± 1.5 h in the early passages (2-8). These data were confirmed by a fall in mRNA expression levels of keratin 1 and transglutaminase 1 within the passages. Furthermore, the activities of the xenobiotic metabolizing phase II enzyme N-acetyltransferase 1 (NAT1) were higher in the late passages compared to the early passages. These results are contrary to an expected decrease in enzyme activity and proliferation rate induced by replicative senescence or cell aging. Data also indicate that routine culture might result in significant changes in proliferation and phase II metabolism. These findings reinforce the necessity of a strict characterization and knowledge of regulation of in vitro systems, as well as the need for new biomarkers, in order to use cells for the development and evaluation of reproducible in vitro test systems.
Frequently, aromatic amine (AA) contact to the skin occurs via occupational or 'life style' exposure to hair dye intermediates and couplers, usually monocyclic p-phenylenediamines and meta-substituted aminophenols. The transport of AA from the outer surface to the systemic circulation predominantly follows the intracellular route. Skin tends to have relatively higher phase II compared to phase I xenobiotic metabolizing enzyme capacity, and levels are generally regarded as lower than those in liver. Inside skin cells AA are primarily N-acetylated and detoxified by N-acetyltransferase 1. AA activation via hydroxylation or chemical oxidation competes with acetylation and is only of importance under circumstances when N-acetylation capacities are limited. The reactive AA derivatives are able to elicit effects by virtue of their modifications of skin proteins resulting in irritant or allergic contact dermatitis. Overall, the effective acetylation of topically applied AAs in skin cells emphasizes a protective role of cutaneous acetylation mediating a classical "first-pass" effect, which attenuates systemic exposure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.