Background: CRISPR/Cas systems allow archaea and bacteria to resist invasion by foreign nucleic acids.Results: The CRISPR/Cas system in Haloferax recognized six different PAM sequences that could trigger a defense response.Conclusion: The PAM sequence specificity of the defense response in type I CRISPR systems is more relaxed than previously thought.Significance: The PAM sequence requirements for interference and adaptation appear to differ markedly.
Background: The Cas6 protein is required for generating crRNAs in CRISPR-Cas I and III systems.Results: The Cas6 protein is necessary for crRNA production but not sufficient for crRNA maintenance in Haloferax.Conclusion: A Cascade-like complex is required in the type I-B system for a stable crRNA population.Significance: The CRISPR-Cas system I-B has a similar Cascade complex like types I-A and I-E.
Non-coding RNAs are key players in many cellular processes within organisms from all three domains of life. The range and diversity of small RNA functions beyond their involvement in translation and RNA processing was first recognized for eukaryotes and bacteria. Since then, small RNAs were also found to be abundant in archaea. Their functions include the regulation of gene expression and the establishment of immunity against invading mobile genetic elements. This review summarizes our current knowledge about small RNAs used for regulation and defence in archaea.
Invading genetic elements pose a constant threat to prokaryotic survival, requiring an effective defence. Eleven years ago, the arsenal of known defence mechanisms was expanded by the discovery of the CRISPR-Cas system. Although CRISPR-Cas is present in the majority of archaea, research often focuses on bacterial models. Here, we provide a perspective based on insights gained studying CRISPR-Cas system I-B of the archaeon Haloferax volcanii. The system relies on more than 50 different crRNAs, whose stability and maintenance critically depend on the proteins Cas5 and Cas7, which bind the crRNA and form the Cascade complex. The interference machinery requires a seed sequence and can interact with multiple PAM sequences. H. volcanii stands out as the first example of an organism that can tolerate autoimmunity via the CRISPR-Cas system while maintaining a constitutively active system. In addition, the H. volcanii system was successfully developed into a tool for gene regulation.
Uptake of foreign mobile genetic elements is often detrimental and can result in cell death. For protection against invasion, prokaryotes have developed several defence mechanisms, which take effect at all stages of infection; an example is the recently discovered CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) immune system. This defence system directly degrades invading genetic material and is present in almost all archaea and many bacteria. Current data indicate a large variety of mechanistic molecular approaches. Although almost all archaea carry this defence weapon, only a few archaeal systems have been fully characterized. In the present paper, we summarize the prerequisites for the detection and degradation of invaders in the halophilic archaeon Haloferax volcanii. H. volcanii encodes a subtype I-B CRISPR-Cas system and the defence can be triggered by a plasmid-based invader. Six different target-interference motifs are recognized by the Haloferax defence and a 9-nt non-contiguous seed sequence is essential. The repeat sequence has the potential to fold into a minimal stem-loop structure, which is conserved in haloarchaea and might be recognized by the Cas6 endoribonuclease during the processing of CRISPR loci into mature crRNA (CRISPR RNA). Individual crRNA species were present in very different concentrations according to an RNA-Seq analysis and many were unable to trigger a successful defence reaction. Recognition of the plasmid invader does not depend on its copy number, but instead results indicate a dependency on the type of origin present on the plasmid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.