Morphine-6-glucuronide clearly produced analgesic effects in healthy volunteers. However, the high amounts of systemic morphine-6-glucuronide needed to produce the same effects as morphine suggest that morphine-6-glucuronide barely contributes to the central nervous opioid effects after administration of analgesic doses of morphine.
ABSTRACT:Intestinal absorption of drugs, nutrients, and other compounds is mediated by uptake transporters expressed at the apical enterocyte membrane. These compounds are returned to the intestinal lumen or released into portal circulation by intestinal efflux transporters expressed at apical or basolateral membranes, respectively. One important transporter superfamily, multiple members of which are intestinally expressed, are the solute carriers (SLCs). SLC expression levels may determine the pharmacokinetics of drugs that are substrates of these transporters. In this study we characterize the distribution of 15 human SLC transporter mRNAs in histologically normal biopsies from five regions of the intestine of 10 patients. The mRNA expression levels of CNT1, CNT2, apical sodium-dependent bile acid transporter (ABST), serotonin transporter (SERT), PEPT1, and OCTN2 exhibit marked differences between different regions of the intestine: the first five are predominantly expressed in the small intestine, whereas OCTN2 exhibits strongest expression in the colon. Two transporter mRNAs studied (OCTN1, OATP2B1) are expressed at similar levels in all gut sections. In addition, ENT2 mRNA is present at low levels across the colon, but not in the small intestine. The other six SLC mRNAs studied are not expressed in the intestine. Quantitative knowledge of transporter expression levels in different regions of the human gastrointestinal tract could be useful for designing intestinal delivery strategies for orally administered drugs. Furthermore, changes in transporter expression that occur in pathological states, such as inflammatory bowel disease, can now be defined more precisely by comparison with the expression levels measured in healthy individuals.
Large individual differences in the clinical response to morphine therapy have been known for a long time by clinicians. The recent advances in genomic research encourage the search for pharmacogenetic causes of that variability. As a measure of central opioid effects, pupil diameters were assessed every 20 min for 18 h after administration of morphine or its active metabolite morphine-6-glucuronide (M6G) in a two-way crossover study. The opioid effects were compared between six subjects with a single-nucleotide polymorphism (SNP) A118G in the mu-opioid receptor gene (five heterozygous, one homozygous) and six control subjects. Non-parametric pharmacokinetic-pharmacodynamic modelling was employed to identify the influence of the A118G SNP on the concentration-response relationship of M6G and morphine, which was described by a sigmoid Emax model. As a measure of potency, the EC50 of the pupil constrictory effects of M6G was 714 +/- 197 nmol/l in wild-type and 1475 +/- 424 nmol/l in heterozygous carriers of the A118G SNP. In the homozygous carrier of the SNP, it had an EC50 of 3140 nmol/l. In addition, the dose-response relationship was flatter in the A118G carriers than in control subjects (shape factor of the sigmoid Emax model: gamma = 3.3 +/- 1.2, 1.7 +/- 0.5 and 1.6 for wild-type, heterozygous and the homozygous A118G carriers, respectively). In contrast, the concentration-response relationship of morphine was not affected by this specific SNP. The A118G SNP in the mu-receptor gene significantly reduces the potency of M6G in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.