FOXP3+ regulatory T cells (Tregs) maintain tolerance against self-antigens and innocuous environmental antigens. However, it is still unknown whether Treg-mediated tolerance is antigen specific and how Treg specificity contributes to the selective loss of tolerance, as observed in human immunopathologies such as allergies. Here, we used antigen-reactive T cell enrichment to identify antigen-specific human Tregs. We demonstrate dominant Treg-mediated tolerance against particulate aeroallergens, such as pollen, house dust mites, and fungal spores. Surprisingly, we found no evidence of functional impairment of Treg responses in allergic donors. Rather, major allergenic proteins, known to rapidly dissociate from inhaled allergenic particles, have a generally reduced capability to generate Treg responses. Most strikingly, in individual allergic donors, Th2 cells and Tregs always target disparate proteins. Thus, our data highlight the importance of Treg antigen-specificity for tolerance in humans and identify antigen-specific escape from Treg control as an important mechanism enabling antigen-specific loss of tolerance in human allergy.
We established an automated method to expand high numbers of clinical-grade NK cells with properties similar to their manually produced counterparts. This automated process represents a highly efficient tool to standardize NK cell processing for therapeutic applications.
UVA1 constitutes around 75% of the terrestrial UV radiation, and most of the output of artificial tanning sources. However, the molecular effects of UVA1 in human skin in vivo are surprisingly poorly understood. We have examined time-dependent whole-genome expression, along with mRNA and protein changes in the skin after one minimal erythema dose of spectrally pure UVA1 (50 J cm(-2)) and 300 nm UVB (30 mJ cm(-2)). After 24 hours, the genes induced to the greatest extent were those involved in extracellular matrix remodeling with both UVA1 (P=5.5e-7) and UVB (P=2.9e-22). UVA1 and UVB caused different effects on matrix metalloproteinase (MMP) expression: UVB induced MMP1, MMP3, and MMP10 mRNA at 24 hours to a much greater extent than UVA1. MMP12 induction by UVA1 at 6 hours is marked and much greater than that by UVB. We have found that MMP12 mRNA induction by UVA1 resulted in expression of MMP12 protein, which is functional as an elastase. This induction of elastase activity did not occur with UVB. We hypothesize that the UVA1 induction of MMP12 mediates some of its photoaging effects, particularly by contributing to elastin degeneration in late solar elastosis. MMP12 is a good marker of UVA1 exposure.
Many critical advances in research utilize techniques that combine high-resolution with high-content characterization at the single cell level. We introduce the MICS (MACSima Imaging Cyclic Staining) technology, which enables the immunofluorescent imaging of hundreds of protein targets across a single specimen at subcellular resolution. MICS is based on cycles of staining, imaging, and erasure, using photobleaching of fluorescent labels of recombinant antibodies (REAfinity Antibodies), or release of antibodies (REAlease Antibodies) or their labels (REAdye_lease Antibodies). Multimarker analysis can identify potential targets for immune therapy against solid tumors. With MICS we analysed human glioblastoma, ovarian and pancreatic carcinoma, and 16 healthy tissues, identifying the pair EPCAM/THY1 as a potential target for chimeric antigen receptor (CAR) T cell therapy for ovarian carcinoma. Using an Adapter CAR T cell approach, we show selective killing of cells only if both markers are expressed. MICS represents a new high-content microscopy methodology widely applicable for personalized medicine.
SummaryHuman pluripotent stem cell (hPSC)-derived mesencephalic dopaminergic (mesDA) neurons can relieve motor deficits in animal models of Parkinson's disease (PD). Clinical translation of differentiation protocols requires standardization of production procedures, and surface-marker-based cell sorting is considered instrumental for reproducible generation of defined cell products. Here, we demonstrate that integrin-associated protein (IAP) is a cell surface marker suitable for enrichment of hPSC-derived mesDA progenitor cells. Immunomagnetically sorted IAP+ mesDA progenitors showed increased expression of ventral midbrain floor plate markers, lacked expression of pluripotency markers, and differentiated into mature dopaminergic (DA) neurons in vitro. Intrastriatal transplantation of IAP+ cells sorted at day 16 of differentiation in a rat model of PD resulted in functional recovery. Grafts from sorted IAP+ mesDA progenitors were more homogeneous in size and DA neuron density. Thus, we suggest IAP-based sorting for reproducible prospective enrichment of mesDA progenitor cells in clinical cell replacement strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.