Egress of four important alphaherpesviruses, equine herpesvirus 1 (EHV-1), herpes simplex virus type 1 (HSV-1), infectious laryngotracheitis virus (ILTV), and pseudorabies virus (PrV), was investigated by electron microscopy of infected cell lines of different origins. In all virus-cell systems analyzed, similar observations were made concerning the different stages of virion morphogenesis. After intranuclear assembly, nucleocapsids bud at the inner leaflet of the nuclear membrane, resulting in enveloped particles in the perinuclear space that contain a sharply bordered rim of tegument and a smooth envelope surface. Egress from the perinuclear cisterna primarily occurs by fusion of the primary envelope with the outer leaflet of the nuclear membrane, which has been visualized for HSV-1 and EHV-1 for the first time. The resulting intracytoplasmic naked nucleocapsids are enveloped at membranes of the trans-Golgi network (TGN), as shown by immunogold labeling with a TGN-specific antiserum. Virions containing their final envelope differ in morphology from particles within the perinuclear cisterna by visible surface projections and a diffuse tegument. Particularly striking was the addition of a large amount of tegument material to ILTV capsids in the cytoplasm. Extracellular virions were morphologically identical to virions within Golgi-derived vesicles, but distinct from virions in the perinuclear space. Studies with gB-and gH-deleted PrV mutants indicated that these two glycoproteins, which are essential for virus entry and direct cell-to-cell spread, are dispensable for egress. Taken together, our studies indicate that the deenvelopment-reenvelopment process of herpesvirus maturation also occurs in EHV-1, HSV-1, and ILTV and that membrane fusion processes occurring during egress are substantially different from those during entry and direct viral cell-to-cell spread.Herpesviruses are large DNA-containing enveloped viruses that replicate in the nuclei of infected cells. Based on biological parameters and sequence data, the family Herpesviridae is divided into the subfamilies Alpha-, Beta-, and Gammaherpesvirinae (58). Despite their biological diversity, many steps of herpesvirus morphogenesis seem to be conserved. Attached herpesvirus virions penetrate the cell membrane by direct fusion between the viral envelope and the plasma membrane, and the deenveloped nucleocapsids reach the nucleopores by movement along cellular microtubuli, where the genomic DNA is released into the nucleus (19,50,51,52). Progeny nucleocapsids assemble in the nucleus and exit this compartment by budding at the inner nuclear membrane into the perinuclear space (35,47). The subsequent events of envelopment and egress remain controversial. Whereas for herpes simplex virus type 1 (HSV-1), a model that entails vesicular transport of enveloped virions through the secretory pathway with concomitant in situ modification of virion glycoproteins was initially proposed, for varicella-zoster virus (VZV), pseudorabies virus (PrV), and human cytomegalovir...
Newcastle disease virus (NDV)-expressing avian influenza virus (AIV) hemagglutinin (HA) of subtype H5 was constructed by reverse genetics. A cloned full-length copy of the genome of the lentogenic NDV strain Clone 30 was used for insertion of the ORF encoding the HA of the highly pathogenic AIV isolate A͞chicken͞ Italy͞8͞98 (H5N2) in the intergenic region between the NDV fusion and hemagglutinin-neuraminidase (HN) genes. Remarkably, two species of HA transcripts were detected in cells infected with the resultant NDVH5. In a second recombinant (NDVH5m), a NDV transcription termination signal-like sequence located within the HA ORF was eliminated by silent mutations. Consequently, NDVH5m produced 2.7-fold more full-length HA transcripts, expressed higher levels of HA, and also incorporated more HA protein into its envelope than NDVH5. NDVH5m stably expressed the modified HA gene for 10 egg passages and both recombinants were found innocuous after intracerebral inoculation of 1-day-old chickens. Immunization of chickens with NDVH5m induced NDVand AIVH5-specific antibodies and protected chickens against clinical disease after challenge with a lethal dose of velogenic NDV or highly pathogenic AIV, respectively. Remarkably, shedding of influenza virus was not observed. Furthermore, immunization with NDVH5m permitted serological discrimination of vaccinated and AIV field virus-infected animals based on antibodies against the nucleoprotein of AIV. Therefore, recombinant NDVH5m is suitable as a bivalent vaccine against NDV and AIV and may be used as marker vaccine for the control of avian influenza.vaccine ͉ recombinant Newcastle disease virus ͉ reverse genetics ͉ fowl plague
High-pathogenic avian influenza viruses (HPAIVs) evolve from lowpathogenic precursors specifying the HA serotypes H5 or H7 by acquisition of a polybasic HA cleavage site. As the reason for this serotype restriction has remained unclear, we aimed to distinguish between compatibility of a polybasic cleavage site with H5/H7 HA only and unique predisposition of these two serotypes for insertion mutations. To this end, we introduced a polybasic cleavage site into the HA of several low-pathogenic avian strains with serotypes H1, H2, H3, H4, H6, H8, H10, H11, H14, or H15, and rescued HA reassortants after cotransfection with the genes from either a low-pathogenic H9N2 or high-pathogenic H5N1 strain. Oculonasal inoculation with those reassortants resulted in varying pathogenicity in chicken. Recombinants containing the engineered H2, H4, H8, or H14 in the HPAIV background were lethal and exhibited i.v. pathogenicity indices of 2.79, 2.37, 2.85, and 2.61, respectively, equivalent to naturally occurring H5 or H7 HPAIV. Moreover, the H2, H4, and H8 reassortants were transmitted to some contact chickens. The H2 reassortant gained two mutations in the M2 proton channel gate region, which is affected in some HPAIVs of various origins. Taken together, in the presence of a polybasic HA cleavage site, non-H5/H7 HA can support a highly pathogenic phenotype in the appropriate viral background, indicating requirement for further adaptation. Therefore, the restriction of natural HPAIV to serotypes H5 and H7 is likely a result of their unique predisposition for acquisition of a polybasic HA cleavage site.
SummaryReducing the cost of vaccine production is a key priority for veterinary research, and the possibility of heterologously expressing antigen in plants provides a particularly attractive means of achieving this. Here, we report the expression of the avian influenza virus haemagglutinin (AIV HA) in tobacco, both as a monomer and as a trimer in its native and its ELPylated form. We firstly presented evidence to produce stabilized trimers of soluble HA in plants. ELPylation of these trimers does not influence the trimerization. Strong expression enhancement in planta caused by ELPylation was demonstrated for trimerized H5-ELP. ELPylated trimers could be purified by a membrane-based inverse transition cycling procedure with the potential of successful scale-up. The trimeric form of AIV HA was found to enhance the HA-specific immune response compared with the monomeric form. Plant-derived AIV HA trimers elicited potentially neutralizing antibodies interacting with both homologous virus-like particles from plants and heterologous inactivated AIV. ELPylation did not influence the functionality and the antigenicity of the stabilized H5 trimers. These data allow further developments including scale-up of production, purification and virus challenge experiments with the final goal to achieve suitable technologies for efficient avian flu vaccine production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.