Edge computing that leverages cloud resources to the proximity of user devices is seen as the future infrastructure for distributed applications. However, developing and deploying edge applications, that rely on cellular networks, is burdensome. Such network infrastructures are often based on proprietary components, each with unique programming abstractions and interfaces. To facilitate straightforward deployment of edge applications, we introduce open-source software (OSS) based radio access network (RAN) on over-the-air (OTA) commercial spectrum with Development Operations (DevOps) capabilities. OSS allows software modifications and integrations of the system components, e.g., Evolved Packet Core (EPC) and edge hosts running applications, required for new data pipelines and optimizations not addressed in standardization. Such an OSS infrastructure enables further research and prototyping of novel end-user applications in an environment familiar to software engineers without telecommunications background. We evaluated the presented infrastructure with end-to-end (E2E) OTA testing, resulting in 7.5MB/s throughput and latency of 21ms, which shows that the presented infrastructure provides low latency for edge applications.
Effective, long-lasting Industrial IoT (IIoT) solutions start with short-term gains and progressively mature with added capabilities and value. The heterogeneous nature of IIoT devices and services suggests frequent changes in resource requirements for different services, applications, and use cases. With such unpredictability, resource orchestration can be quite complicated even in basic use cases and almost impossible to handle in some extensively dynamic use cases. In this paper, we propose SDRM; an SDN-enabled Resource Management scheme. This novel orchestration methodology automatically computes the optimal resource allocation for different IIoT network models and dynamically adjust assigned resources based on predefined constraints to ensure Service Level Agreement (SLA). The proposed approach models resource allocation as a Constraint Satisfaction Problem (CSP) where optimality is based on the solution of a predefined Satisfiability (SAT) problem. This model supports centralized management of all resources using a software defined approach. Such resources include memory, power, bandwidth, and edgecloud resources. SDRM aims at accelerating efficient resource orchestration through dynamic workload balancing and edge-cloud resource utilization, thereby reducing the cost of IIoT system deployment and improving the overall ROI for adopting IIoT solutions. We model our resource allocation approach on SAVILE ROW using ESSENSE PRIME modeling language, we then implement the network model on CloudSimSDN and PureEdgeSim. We present a detailed analysis of the system architecture and the key technologies of the model. We finally demonstrate the efficiency of the model by presenting experimental results from a prototype system. Our test results show an extremely low solver time ranging from 0.47 ms to 0.5 ms for nodes ranging from 100 to 500 nodes. With edge-cloud collaboration, our results show about 4 percent improvement in overall task success rates.INDEX TERMS Constraint satisfaction problem (CSP), software defined resource management (SDRM), software defined networking (SDN), edge computing, cloud computing, Industry 4.0, Internet of Things (IoT), Industrial IoT (IIoT), resource management.
Multi-Access Edge Computing (MEC) is a key enabling technology for Fifth Generation (5G) mobile networks. MEC facilitates distributed cloud computing capabilities and information technology service environment for applications and services at the edges of mobile networks. This architectural modification serves to reduce congestion, latency, and improve the performance of such edge colocated applications and devices. In this paper, we demonstrate how reactive service migration can be orchestrated for low-power MEC-enabled Internet of Things (IoT) devices. Here, we use open-source Kubernetes as container orchestration system. Our demo is based on traditional client-server system from user equipment (UE) over Long Term Evolution (LTE) to the MEC server. As the use case scenario, we post-process live video received over web real-time communication (WebRTC). Next, we integrate orchestration by Kubernetes with S1 handovers, demonstrating MEC-based software defined network (SDN). Now, edge applications may reactively follow the UE within the radio access network (RAN), expediting lowlatency. The collected data is used to analyze the benefits of the low-power MEC-enabled IoT device scheme, in which end-to-end (E2E) latency and power requirements of the UE are improved. We further discuss the challenges of implementing such schemes and future research directions therein.
Mixed reality (MR) applications are expected to become common when 5G goes mainstream. However, the latency requirements are challenging to meet due to the resources required by video-based remoting of graphics, that is, decoding video codecs. We propose an approach towards tackling this challenge: a client-server implementation for transacting intermediate representation (IR) between a mobile UE and a MEC server instead of video codecs and this way avoiding video decoding. We demonstrate the ability to address latency bottlenecks on edge computing workloads that transact graphics. We select SPIR-V compatible GPU kernels as the intermediate representation.Our approach requires know-how in GPU architecture and GPU domain-specific languages (DSLs), but compared to video-based edge graphics, it decreases UE device delay by sevenfold. Further, we find that due to low cold-start times on both UEs and MEC servers, application migration can happen in milliseconds. We imply that graphics-based location-aware applications, such as MR, can benefit from this kind of approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.