A Ni0‐NCN pincer complex featuring a six‐membered N‐heterocyclic carbene (NHC) central platform and amidine pendant arms was synthesized by deprotonation of its NiII precursor. It retained chloride in the square‐planar coordination sphere of nickel and was expected to be highly susceptible to oxidative addition reactions. The Ni0 complex rapidly activated ammonia at room temperature, in a ligand‐assisted process where the carbene carbon atom played the unprecedented role of proton acceptor. For the first time, the coordinated (ammine) and activated (amido) species were observed together in solution, in a solvent‐dependent equilibrium. A structural analysis of the Ni complexes provided insight into the highly unusual, non‐innocent behavior of the NHC ligand.
Four-membered rings with a P Ch core (Ch=S, Se) and phosphorus in the +3 oxidation state have been synthesized. The utility of these rings as a source of monomeric phosphinidene chalcogenides was probed by the addition of an N-heterocyclic carbene, resulting in a base-stabilized phosphinidene sulfide. Similarly, persistence of the phosphinidene selenide in solution was shown through cycloaddition chemistry with 2,3-dimethylbutadiene at elevated temperatures. The observed reactivity was explained by detailed computational work that established the conditions upon which the P Ch rings can liberate phosphinidene chalcogenides.
Four-membered rings with a P BCh core (Ch=S, Se) have been synthesized by the reaction of phosphinidene chalcogenide (Ar*P=Ch) and phosphaborene (Mes*P=BNR ). The mechanistic pathways towards these rings are explained by detailed computational work that confirmed the preference for the formation of P-P, not P-B, bonded systems, which seems counterintuitive given that both phosphorus atoms contain bulky ligands. The reactivity of the newly synthesized heterocycles, as well as that of the known (RPCh) rings (n=2, 3), was probed by the addition of N-heterocyclic carbenes, which revealed that all investigated compounds can act as sources of low-coordinate phosphorus species.
Flexible, chelating bis(NHC) ligand 2, able to accommodate both cis-and trans-coordination modes, was used to synthesize (2)Ni(η 2-cod), 3. In reaction with GeCl2, this produced (2)NiGeCl2, 4, featuring a T-shaped Ni(0) and a pyramidal Ge center. Complex 4 could also be prepared from [(2)GeCl]Cl, 5, and Ni(cod)2, in a reaction that formally involved Ni-Ge transmetalation, followed by coordination of the extruded GeCl2 moiety to Ni. A computational analysis showed that 4 possesses considerable multiconfigurational character and the Ni→Ge bond is formed through σ-donation from the Ni 4s, 4p, and 3d orbitals to Ge. (NHC)2Ni(cod) complexes 9 and 10, as well as (NHC)2GeCl2 derivative 11, incorporating ligands that cannot accommodate a wide bite angle, failed to produce isolable Ni-Ge complexes. The isolation of (2)Ni(η 2-Py), 12, provides further evidence for the reluctance of the (2)Ni(0) fragment to act as a σ-Lewis acid.
Flexible, chelating bis(NHC) ligand 2, able to accommodate both cis-and trans-coordination modes, was used to synthesize (2)Ni(η 2 -cod), 3. In reaction with GeCl2, this produced (2)NiGeCl2, 4, featuring a T-shaped Ni(0) and a pyramidal Ge center. Complex 4 could also be prepared from [(2)GeCl]Cl, 5, and Ni(cod)2, in a reaction that formally involved Ni-Ge transmetalation, followed by coordination of the extruded GeCl2 moiety to Ni. A computational analysis showed that 4 possesses considerable multiconfigurational character and the Ni→Ge bond is formed through σ-donation from the Ni 4s, 4p, and 3d orbitals to Ge. (NHC)2Ni(cod) complexes 9 and 10, as well as (NHC)2GeCl2 derivative 11, incorporating ligands that cannot accommodate a wide bite angle, failed to produce isolable Ni-Ge complexes. The isolation of (2)Ni(η 2 -Py), 12, provides further evidence for the reluctance of the (2)Ni(0) fragment to act as a σ-Lewis acid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.